icp analysis
Recently Published Documents


TOTAL DOCUMENTS

56
(FIVE YEARS 14)

H-INDEX

8
(FIVE YEARS 2)

Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2380
Author(s):  
Zaher Raad ◽  
Joumana Toufaily ◽  
Tayssir Hamieh ◽  
Marcelo E. Domine

The mild hydrotreatment of a model mixture of tar-type compounds (i.e., naphthalene, 1-methylnaphthalene, acenaphthylene, and phenanthrene) to produce partially hydrogenated products in the range of C9–C15 was studied over Pd supported on TiO2 possessing different crystalline phases. Pd-based catalysts were prepared and characterized by ICP analysis, XRD, N2 adsorption isotherms, HR-TEM, and NH3-TPD, among others. The hydrotreatment activity and selectivity towards the desired hydrogenated products (i.e., tetralin and others) increased with both the acidity and surface area of the catalyst, along with the presence of small and well distributed Pd nanoparticles. For the selected 1.3 wt% Pd/TiO2 nano catalyst, the operational conditions for maximizing tar conversion were found to be 275 °C, 30 bar of H2, and 0.2 g of catalyst for 7 h. The catalyst revealed remarkable hydrotreatment activity and stability after several reuses with practically no changes in TiO2 structure, quite low carbon deposition, and any Pd leaching detected, thus maintaining both a small Pd particle size and adequate distribution, even after regeneration of the catalyst. Additionally, the Pd/TiO2 nano catalyst was demonstrated to be more active than other commonly used metal/alumina and more selective than metal/USY zeolites in the mild hydrotreatment of tar-type compounds, thus providing an efficient catalytic route for obtaining partially hydrogenated C9–C15 hydrocarbons useful as jet-fuel components or additives (improvers), as well as chemicals and solvents for industrial applications.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mahboubeh Asadi ◽  
M. Reza Naimi-Jamal ◽  
Leila Panahi

AbstractA new nano-scale Cu@salicylaldehyde-modified-chitosan (Cu@Sal-CS) was synthesized through a green, eco-friendly and cost-effective technique. The prepared catalyst was characterized using Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), Energy-dispersive X-ray spectroscopy (EDXS), and inductively coupled plasma (ICP) analysis. The synthesized Cu@Sal-CS catalyst indicated its performance in the C–O and C–N oxidative coupling using the reaction of 1,3-dicarbonyl derivatives/2- substituted phenols with amides for the preparation of carbamates, as well as in the reaction of aldehydes and various amines in the synthesis of amides. The significant features of this work are operational simplicity of catalyst synthesis, in situ and new modification method, use of an efficient, recoverable, frequently reused and stable catalyst without any loss of catalytic activity, and high yields of the products in short times.


2021 ◽  
Author(s):  
Hossein Khashei Siuki ◽  
Pouya Ghamari Kargar ◽  
Ghodsieh Bagherzade

Abstract In this project, the new catalyst copper defines as Fe3O4@Pectin@(CH2)3-Acetamide-Cu(II) was successfully manufactured and fully characterized by different techniques, including FT-IR, XRD, TEM, FESEM, EDX, VSM, and ICP analysis. All results showed that copper was successfully supported on the polymer‐coated magnetic nanoparticles. One of the most important properties of a catalyst is the ability to be prepared from simple materials such as pectin that’s a biopolymer that is widely found in nature. The catalytic activity of Fe3O4@Pectin@(CH2)3-Acetamide-Cu(II) was examined in a classical, one pot, and the three-component reaction of terminal alkynes, alkyl halides, and sodium azide in water and observed, proceeding smoothly and completed in good yields and high regioselectivity. The critical potential interests of the present method include high yields, recyclability of catalyst, easy workup, using an eco-friendly solvent, and the ability to sustain a variety of functional groups, which give economical as well as ecological rewards. The capability of the nanocomposite was compared with previous works, and the nanocomposite was found more efficient, economical, and reproducible. Also, the catalyst can be easily removed from the reaction solution using an external magnet and reused for five runs without reduction in catalyst activity.


2021 ◽  
Vol 3 (6 (111)) ◽  
pp. 80-88
Author(s):  
Nadia Chrisayu Natasha ◽  
Latifa Hanum Lalasari ◽  
Lia Andriyah ◽  
Tri Arini ◽  
Fariza Yunita ◽  
...  

Lithium minerals become a sub-economic raw material for lithium production to fulfill the lithium demand. This study is about lithium extraction from mica schist using the roasting and leaching processes. The mica schist located in Kebumen, Indonesia was used to study the phenomena during the lithium extraction process. Sodium sulfate was used as a roasting agent while 0.36 M sulfuric acid was used as a leaching agent. Solid/liquid ratio (1:5, 1:10, 1:15 and 1:20 (g/mL)) and leaching time (30, 60, 90 and 120 minutes) were used as variables in this study. The roasting process was done at 700 °С for 40 minutes while the leaching process was done at 70 °С and 350 rpm. The ratio of additive and mica schist was 1.5:1 (g/g). XRD, ICP-OES, and SEM were used to observe the formed compounds, chemical composition and morphology of the materials. HighScore Plus (HSP) was used to interpret the content of each compound in mica schist, roasted mica schist, and residue. ICP analysis confirmed that the mica schist contains 45.28 ppm of lithium. It is supported by XRD that lithium exists in mica schist as lepidolite (KLi2AlSi4O10(F,OH)2). Sulfate roasting did not affect the type of lepidolite but the lepidolite reactivity against the chemical agent. SEM analysis shows that the roasting process reduced the average particle size from 32.17 to 27.16 µm. ICP analysis of roasted mica schist shows that lithium concentration was reduced from 45.28 to 1.27 ppm. The optimum result from this study was 97.66 % extraction of lithium while solid/liquid ratio was 1:5 (g/ml) and leaching time was 30 minutes. HSP shows that lepidolite contents in initial mica schist, roasted mica schist and residue were 60.6; 24.3 and 18.7 %, respectively. Lithium concentration in the residue according to ICP analysis is 1.06 ppm.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1462
Author(s):  
Hao Xu ◽  
Jie Zhu ◽  
Xiong Wang ◽  
Chao Shen ◽  
Shengshen Meng ◽  
...  

Developing sustainable routes for the synthesis of zeolites is still a vital and challenging task in zeolite scientific community. One of the typical examples is sustainable synthesis of aluminosilicate EU-1 zeolite, which is not very efficient and environmental-unfriendly under hydrothermal condition due to the use of a large amount of water as solvent. Herein, we report a sustainable synthesis route for aluminosilicate EU-1 zeolite without the use of solvent for the first time. The physicochemical properties of the obtained EU-1 zeolite are characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetry-differential thermal analysis (TG-DTA), N2 sorption, inductively coupled plasma (ICP) analysis, and solid nuclear magnetic resonance (NMR), which show the product has high crystallinity, uniform morphology, large BET surface area, and four-coordinated aluminum species. Moreover, the impact of synthesis conditions is investigated in detail. The sustainable synthesis of aluminosilicate EU-1 zeolite under solvent-free


2021 ◽  
Author(s):  
Zena Severin ◽  
Jessica L. Till ◽  
Oman Drilling Project Phase 1 Science Party

<p>Within the Samail Ophiolite, Oman, there are intervals of listvenite outcrops between layers of serpentinite zones above the basal thrust zone, atop the metamorphic sole. Near the base of the ophiolite mantle section, some peridotites underwent 100% carbonation from metasomatic introduction of CO<sub>2</sub>-bearing fluids <200°C to form listvenites during the time of emplacement (97 ± 29 Ma, Falk and Kelemen, 2015). The carbonate rocks comprise mostly magnesite and/or dolomite, quartz, Cr-spinel, and Fe-(hydr)oxides; with carbonates as the sole Mg-minerals and quartz as the only silicate phase. The aim of this study is to chemically and petrographically investigate the Fe-bearing minerals within the fluid-altered mantle rocks in drill core samples from hole BT1B of the ICDP Oman Drilling Project. Sequential chemical extractions are useful for recognizing iron pools based on the minerology. We investigated the quantities of Fe-oxide/hydroxide phases through a series of chemical extractions (Poulton and Canfield, 2005) via atomic absorption spectroscopy in addition to optical microscope, SEM/EDS, EPMA/WDS and ICP analysis. Extractions performed at room temperature and one at 50°C included: carbonate-associated Fe (sodium acetate) targeting siderite, HCl-extractable Fe(II), reducible oxides (citrate-dithionite) targeting hematite and possible goethite, and magnetite (oxalate). Carbonate-based Fe in the listvenites from a sodium acetate extraction ranges from 12-28 mg/g, while the same extraction performed at 50°C for twice as long resulted in higher proportions of carbonate-associated Fe (15-35 mg/g). Easily reducible iron quantities from the diluted HCl solution extraction display the lowest overall Fe fractions (0.75-5.5 mg/g) following the room temperature acetate and 0.63-1.7 mg/g after the 50°C acetate extraction. Fe in reducible oxides extracted by dithionite ranged from 1.4-15 mg/g with similar result after both a room-temperature acetate and a 50°C acetate step. Oxalate extraction succeeding the room-temperature acetate yielded magnetite concentrations of 1.9-8.0 mg/g, while the increased temperature and time in the first step (acetate extraction) were followed by significantly lower amounts of Fe extracted by oxalate (0.47- 3.6 mg/g). Additionally, the same extractions were performed on a pure siderite sample from Greenland. For siderite samples crushed a week prior to analysis, the carbonate-associated Fe in sodium acetate extract was 165±17 mg/g; the sidenote yielded 42 wt% of overall extracted Fe (392±33 mg/g). This is only slightly lower than the expected 48.2 wt% of Fe for a pure siderite sample. Dilute HCl extractions display results of 126±5.4 mg/g, dithionite solution extracted 25±0.5 mg/g and oxalate proportions were 76±9 mg/g. Due to possible oxidation of siderite to magnetite occurring during the time between powdering the samples and analysis, the full dissolution of siderite may not be fully represented in only the acetate. Microprobe data shows a total amount of FeO in carbonates as 1.3-10.8 wt%. This is more than or similar to the acetate and HCl proportions of Fe which represent carbonate associated minerals in the listvenites. Data obtained from EMPA and ICP will additionally be discussed in relation to the Fe-oxide phases with relation to the listvenites minerology.</p>


RSC Advances ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 4339-4355
Author(s):  
Pouya Ghamari kargar ◽  
Ghodsieh Bagherzade ◽  
Hossein Eshghi

In this work, the new trinuclear manganese catalyst defined as Fe3O4@NFC@NNSM-Mn(iii) was successfully manufactured and fully characterized by different techniques, including FT-IR, XRD, TEM, SEM, EDX, VSM, and ICP analysis.


Catalysts ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 934 ◽  
Author(s):  
Raoof Bardestani ◽  
Rouholamin Biriaei ◽  
Serge Kaliaguine

Catalytic hydrogenation of aldehydes is required as the stabilizing step in bio-oils conversion. Ruthenium supported on carbon was used in the present work for hydrogenation of furfural (FF) to furfuryl alcohol (FA). Converting a biochar with no surface area and low carboxyl groups surface density to an outstanding catalyst support using a very simple mild air/steam oxidation is the original contribution of this work. The mildly oxidized biochar is impregnated with a targeted loading of 2.5 wt.% Ru via ion-exchange, using Ru(NH3)6Cl2 precursor. ICP analysis shows that the mild oxidation increases Ru adsorption capacity of untreated biochar from 1.2 to 2.2 wt.%. H2 chemisorption and TEM analysis indicate that the preliminary mild oxidation leads to higher Ru dispersion. XPS analysis also shows that the treatment prevents Ru from surface segregation. The highest value of 93% FA selectivity at 53% FF conversion was obtained in a batch autoclave reactor under optimized conditions.


Minerals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 391
Author(s):  
Xuelei Wang ◽  
Zhaojun Dong ◽  
Qiufeng Wang ◽  
Chao Meng ◽  
Weibin Zhuang ◽  
...  

Three different metal-containing zinc phosphate, [C3H12N2][Zn0.5Fe1.5(PO4)2] (1), [C3H12N2][Zn0.67Co1.33(PO4)2] (2) and [C3H12N2][Zn0.67Ni1.33(PO4)2] (3) with EDI topology were prepared by sol–gel assisted hydrothermal method. The advantages of this method are lower synthesis temperature and uniform mixing. The crystalline metal-containing zinc phosphate zeolites exhibit a variety of SEM morphologies because of the entanglement of three different metal ions. The zinc ions in the zinc phosphate EDI molecular sieve were partially substituted by Fe, Co and Ni ions. The ICP analysis shows that the metal ratios of Zn/M are 1/3, 1/2 and 1/2. Variable temperature susceptibility was measured on powder samples in the range 2–300 K. All three M-EDI molecular sieves exhibit antiferromagnetic properties. In addition, they were analyzed by XRD, CHN, IR and TG.


Sign in / Sign up

Export Citation Format

Share Document