Adequate model complexity for scenario analysis of VOC stripping in a trickling filter

2001 ◽  
Vol 43 (7) ◽  
pp. 29-38 ◽  
Author(s):  
H. Vanhooren ◽  
T. Verbrugge ◽  
G. Boeije ◽  
D. Demey ◽  
P. A. Vanrolleghem

Two models describing the stripping of volatile organic contaminants (VOCs) in an industrial trickling filter system are developed. The aim of the models is to investigate the effect of different operating conditions (VOC loads and air flow rates) on the efficiency of VOC stripping and the resulting concentrations in the gas and liquid phases. The first model uses the same principles as the steady-state non-equilibrium activated sludge model SimpleTreat, in combination with an existing biofilm model. The second model is a simple mass balance based model only incorporating air and liquid and thus neglecting biofilm effects. In a first approach, the first model was incorporated in a five-layer hydrodynamic model of the trickling filter, using the carrier material design specifications for porosity, water hold-up and specific surface area. A tracer test with lithium was used to validate this approach, and the gas mixing in the filters was studied using continuous CO2 and O2 measurements. With the tracer test results, the biodegradation model was adapted, and it became clear that biodegradation and adsorption to solids can be neglected. On this basis, a simple dynamic mass balance model was built. Simulations with this model reveal that changing the air flow rate in the trickling filter system has little effect on the VOC stripping efficiency at steady state. However, immediately after an air flow rate change, quite high flux and concentration peaks of VOCs can be expected. These phenomena are of major importance for the design of an off-gas treatment facility.

DYNA ◽  
2014 ◽  
Vol 81 (185) ◽  
pp. 189 ◽  
Author(s):  
Luciano Barreto-Mendes ◽  
Ilda de Fatima Ferreira-Tinoco ◽  
Nico Ogink ◽  
Robinson Osorio-Hernandez ◽  
Jairo Alexander Osorio-Saraz

2013 ◽  
Vol 34 (4) ◽  
pp. 187-197 ◽  
Author(s):  
Andrzej Kacprzak ◽  
Rafał Kobyłecki ◽  
Zbigniew Bis

Abstract The influences of various operating conditions including cathode inlet air flow rate, electrolyte temperature and fuel particles size on the performance of the direct carbon fuel cell DCFC were presented and discussed in this paper. The experimental results indicated that the cell performance was enhanced with increases of the cathode inlet gas flow rate and cell temperature. Binary alkali hydroxide mixture (NaOH-LiOH, 90-10 mol%) was used as electrolyte and the biochar of apple tree origin carbonized at 873 K was used as fuel. Low melting temperature of the electrolyte and its good ionic conductivity enabled to operate the DCFC at medium temperatures of 723-773 K. The highest current density (601 A m−2) was obtained for temperature 773 K and air flow rate 8.3×106 m3s−1. Itwas shown that too low or too high air flow rates negatively affect the cell performance. The results also indicated that the operation of the DCFC could be improved by proper selection of the fuel particle size.


Energies ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 73 ◽  
Author(s):  
Wei He ◽  
Pengkun Yu ◽  
Zhongting Hu ◽  
Song Lv ◽  
Minghui Qin ◽  
...  

Found in some specific scenarios, drinking water is hard for people to get, such as during expeditions and scientific investigations. First, a novel water generator with only two thermoelectric coolers (Model A) is designed for extracting water from atmospheric vapor and then experimentally studied under a small inlet air flow rate. The impact of operating conditions on surface temperatures of cold/hot sides and water yield are investigated, including the air flow rate and humidity. Alternately, to determine the super performance of Model A, a comparative experiment between Model A and a reference model (Model B) is carried out. The results suggest that both the cold/hot temperature and water yield in Model A increases with the humidity and air flow rate rising. Seen in comparisons of Model A and Model B, it is found that, at an air humidity of 90% and air flow rate of 30 m3/h, the total water yield was increased by 43.4% and the corresponding value reached the maximum increment of 66.7% at an air humidity of 60% and air flow rate of 30 m3/h. These features demonstrate the advantage of Model A especially in low air humidity compared to Model B.


Author(s):  
Marek Kalenik

Abstract: Investigations of hydraulic operating conditions of air lift pump with three types of air-water mixers. The paper presents the analysis of results of the investigations concerning the influence of various constructive solutions of the air-water mixers on hydraulic operating conditions of the air lift pump. The scope of the investigations encompassed the determination of characteristics of delivery head and delivery rate for three types of air-water mixers applied in the constructed air lift pump. Using the obtained results, the efficiency of the three types of air-water mixers applied in this air lift pump was determined. The analysis was carried out and there was checked whether the improved analytical Stenning-Martin model can be used to design air lift pumps with the air-water mixers of these types. The highest capacity in the water transport was reached by the air lift pump with the 1st type air-water mixer, the lowest one – with the 3rd type air-water mixer. The water flow in the air lift pump increases along with the rise in the air flow. The lower are the hydraulic losses generated during flow of the air flux by the air-water mixer, the higher is the air lift pump capacity. Along with the rise in the water delivery head, the capacity of the air lift pump decreases. The highest efficiency is reached by the air lift pump with the 1st type air-water mixer, the lowest – with the 3st type air-water mixer. The efficiency of the air lift pump for the three investigated types of air-water mixers decreases along with the rise in air flow rate and water delivery head. The values of submergence ratio (h/L) of the delivery pipe, calculated with the use of the improved analytical Stenning-Martin model, coincide quite well with the values of h/L determined from the measurements.


2021 ◽  
Author(s):  
Dieter Scholz

Ventilation on board of an aircraft is governed by the ventilation equation. In the steady state case, a concentration of any substance depends only on the source strength and the effective air flow rate for ventilation. Not all air for ventilation is effective and helps to lower concentration. Some air leaves the cabin without mixing and rinsing. This is expressed by the ventilation efficiency. The dynamics follows an exponential function and is expressed by a time constant that depends on the air change rate and the ventilation efficiency. The (theoretical) air change rate is the air flow rate divided by the volume of the room. With full mixing (i.e. ventilation efficiency of 1), the concentration is reduced to 36.8% after one air change.


Metrologiya ◽  
2021 ◽  
pp. 4-30
Author(s):  
V. I. Chesnokov

In the development of the previously obtained results a more accurate estimate of the methodological error in reproducing the volumetric air flow rate by reference critical nozzle is given, associated with the choice of the gas flow model and due to taking into account the initial kinetic energy of the flow at the nozzle inlet. Based on improved flow model an analytical evaluation of the methodological error in reproducing the volumetric air flow rate by reference critical nozzle, which is due to a change in the humidity of the working air, has been carried out. It is shown that the methodological error in reproducing the volumetric air flow rate by reference critical nozzle, associated with a change in the air humidity, as well as the analogies methodical error caused by the existence of the initial kinetic energy of the flow, must be taken part in accuracy characteristics at the real operating conditions of the standard volumetric air flow rate using critical nozzles.


1990 ◽  
Vol 17 (2) ◽  
pp. 243-251
Author(s):  
David W. Machina ◽  
Jatinder K. Bewtra

The use of bottom or surface fluid velocity within air-agitated circular and rectangular vessels has been studied as a possible design parameter to achieve a specified scale of agitation. Experimental data are presented in terms of five dimensionless numbers involving the fluid velocity, the depth of fluid in the vessel, the elevation of the diffuser above the vessel floor, the air flow rate, and the compressor power required. Design equations are obtained for a total of 506 physical observations with a ring diffuser around the perimeter of a circular vessel, a pipe diffuser at the centre of a circular vessel, and a line diffuser at the centre line or end wall of a rectangular vessel. The applicable range of variables for each equation is provided. It is shown that both bottom and surface velocities increase with an increase in air flow rate or compressor power requirement for a specified fluid depth. For a constant air flow rate and fluid depth, the surface velocity always exceeded the bottom velocity. The surface and bottom velocities are related to operating conditions in different water and wastewater treatment units in which a specified degree of uniformity of the vessel contents has to be maintained in order to keep a specified particle in suspension. The sensitivity analysis of the model revealed that the fluid depth was the most important design parameter in controlling the velocities within air-agitated vessels. Key words: bottom velocity, surface velocity, velocity gradient, degree of uniformity, air-agitated rectangular vessels, air-agitated circular vessels.


2020 ◽  
Vol 10 (11) ◽  
pp. 3732
Author(s):  
Akinlabi A. A. Hakeem ◽  
Davut Solyali

Lithium ion batteries (LiBs) are considered one of the most suitable power options for electric vehicle (EV) drivetrains, known for having low self-discharging properties which hence provide a long life-cycle operation. To obtain maximum power output from LiBs, it is necessary to critically monitor operating conditions which affect their performance and life span. This paper investigates the thermal performance of a battery thermal management system (BTMS) for a battery pack housing 100 NCR18650 lithium ion cells. Maximum cell temperature (Tmax) and maximum temperature difference (ΔTmax) between cells were the performance criteria for the battery pack. The battery pack is investigated for three levels of air flow rate combined with two current rate using a full factorial Design of Experiment (DoE) method. A worst case scenario of cell Tmax averaged at 36.1 °C was recorded during a 0.75 C charge experiment and 37.5 °C during a 0.75 C discharge under a 1.4 m/s flow rate. While a 54.28% reduction in ΔTmax between the cells was achieved by increasing the air flow rate in the 0.75 C charge experiment from 1.4 m/s to 3.4 m/s. Conclusively, increasing BTMS performance with increasing air flow rate was a common trend observed in the experimental data after analyzing various experiment results.


2017 ◽  
Vol 75 (11) ◽  
pp. 2538-2545 ◽  
Author(s):  
Lei Zhu ◽  
DeMing Dong ◽  
XiuYi Hua ◽  
Yang Xu ◽  
ZhiYong Guo ◽  
...  

Ammonia nitrogen (NH4-N) contaminated wastewater has posed a great threat to the safety of water resources. In this study, air stripping was employed to remove and recover NH4-N from acetylene purification wastewater (APW) in a polyvinylchloride manufacturing plant. Investigated parameters were initial APW pH, air flow rate, APW temperature and stripping time. The NH4-N removal by air stripping has been modeled and the overall volumetric mass transfer coefficient (KLa) of the stripping process has been calculated from the model equation obtained. In addition, the ability of H2SO4 solution to absorb the NH3 stripped was also investigated. The results indicated that under the experimental conditions, the APW temperature and its initial pH had significant effects on the NH4-N removal efficiency and the KLa, while the effects of other factors were relatively minor. The removal efficiency and residual concentration of NH4-N were about 91% and 12 mg/L, respectively, at the optimal operating conditions of initial APW pH of 12.0, air flow rate of 0.500 m3/(h·L), APW temperature of 60 °C and stripping time of 120 min. One volume of H2SO4 solution (0.2 mol/L) could absorb about 93% of the NH3 stripped from 54 volumes of the APW.


2018 ◽  
Vol 1 (2) ◽  
pp. 160-167
Author(s):  
R Hasibuan ◽  
Heri Gusman

Garcinia atroviridis is a commodity with promising economic potential in the future, that it is not only used as spices but also as a necessity in cosmetic industry. One of the backgrounds of this research was the abundant amount of Garcinia atroviridis in North Sumatra. The post-harvest of processing Garcinia atroviridis was conducted by conventional drying process, i.e. drying out directly under the scorching sun where it was put on the sack or tarp and in the roads passed by motor vehicles. It had some disadvantages such as, a long drying time, lack of hygiene, contamination of dust and sand, animals and insects plague, as well as uncertain whether circumstances. Therefore, the dryer is very much needed as it can overcome these weaknesses. This research attempted to conduct a drying study of Garcinia atroviridis using tray dryer. It consisted of a drying room equipped with a tray of dried material, air heater, fan, control panel of temperature gauge and relative humidity (RH). The main purpose of this research was to study the influence of operating conditions against the rate of drying and characteristics of drying Garcinia atroviridis. This research was conducted by varying the drying temperature (45 and 55 oC) and air flow rate (1.15 and 2.25 m/s), with a weight of 500 grams Garcinia atroviridis. The drying was done by weighing each ingredient in a specified time interval until reaching constant weight. The results showed that the air flow rate and temperature affected the drying rate, where the 55 oC temperature and 2.25 m/s flow rate could lower the moisture content of 90% within 540 minutes. As for the characteristics of the drying Garcinia atroviridis, it generally showed that there were only two stages of drying rate, namely rising and declining drying rate. But on the operating conditions of the 1.15 m/s air flow rate and 55 oC temperature, it showed three stages namely, rising, constant and declining drying.


Sign in / Sign up

Export Citation Format

Share Document