Temperature characteristics of methanogenic archaea and acetogenic bacteria isolated from cold environments

2001 ◽  
Vol 44 (8) ◽  
pp. 41-48 ◽  
Author(s):  
A.N. Nozhevnikova ◽  
M.V. Simankova ◽  
S.N. Parshina ◽  
O.R. Kotsyurbenko

In most terrestrial ecosystems of boreal and northern climate zones degradation of organic matter with methane production occurs at low temperature. Two psychrophilic methanogenic archaea and four acetogenic bacteria were described until now. Recently, we isolated 12 new strains of methanogenic archaea and 3 strains of acetogenic bacteria from different natural and man-made cold environments including tundra permafrost wetland, sediments of deep lakes, silt of sludge disposal pond, pig and cattle manure digested at 6°C, and an anaerobic EGSB-reactor operated at 9°C. The temperature characteristics of microorganisms isolated from cold environments are discussed. All isolates are able to grow below 10°C, most of them grow at such low temperature as 1°C. The upper temperature limit for most growing at low temperature acetogens is 30°C, and the temperature optima is 20°C and below. Most isolated methanogens have temperature optima around 25°C, and upper temperature limits at 30-40°C. Whether microorganisms able to grow at low temperature are classified as mesophiles, psychrophiles, or psychrotrophs (psychrotolerants) is an issue of this article. We propose to modify the basic temperature definition of anaerobic microorganisms growing at low temperature.

1979 ◽  
Vol 76 ◽  
pp. 1013-1015 ◽  
Author(s):  
D.P. Kiryukhin ◽  
I.M. Barkalov ◽  
V.l. Goldanskii

Rice ◽  
2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Tifeng Yang ◽  
Lian Zhou ◽  
Junliang Zhao ◽  
Jingfang Dong ◽  
Qing Liu ◽  
...  

Abstract Background Direct seeding is an efficient cultivation technique in rice. However, poor low temperature germinability (LTG) of modern rice cultivars limits its application. Identifying the genes associated with LTG and performing molecular breeding is the fundamental way to address this issue. However, few LTG QTLs have been fine mapped and cloned so far. Results In the present study, the LTG evaluation of 375 rice accessions selected from the Rice Diversity Panel 2 showed that there were large LTG variations within the population, and the LTG of Indica group was significantly higher than that of Japonica and Aus groups (p < 0.01). In total, eleven QTLs for LTG were identified through genome-wide association study (GWAS). Among them, qLTG_sRDP2–3/qLTG_JAP-3, qLTG_AUS-3 and qLTG_sRDP2–12 are first reported in the present study. The QTL on chromosome 10, qLTG_sRDP2–10a had the largest contribution to LTG variations in 375 rice accessions, and was further validated using single segment substitution line (SSSL). The presence of qLTG_sRDP2–10a could result in 59.8% increase in LTG under 15 °C low temperature. The expression analysis of the genes within qLTG_sRDP2–10a region indicated that LOC_Os10g22520 and LOC_Os10g22484 exhibited differential expression between the high and low LTG lines. Further sequence comparisons revealed that there were insertion and deletion sequence differences in the promoter and intron region of LOC_Os10g22520, and an about 6 kb variation at the 3′ end of LOC_Os10g22484 between the high and low LTG lines, suggesting that the sequence variations of the two genes could be the cause for their differential expression in high and low LTG lines. Conclusion Among the 11 QTLs identified in this study, qLTG_sRDP2–10a could also be detected in other three studies using different germplasm under different cold environments. Its large effect and stable expression make qLTG_sRDP2–10a particularly valuable in rice breeding. The two genes, LOC_Os10g22484 and LOC_Os10g22520, were considered as the candidate genes underlying qLTG_sRDP2–10a. Our results suggest that integrating GWAS and SSSL can facilitate identification of QTL for complex traits in rice. The identification of qLTG_sRDP2–10a and its candidate genes provide a promising source for gene cloning of LTG and molecular breeding for LTG in rice.


1994 ◽  
Vol 30 (16) ◽  
pp. 1358-1359 ◽  
Author(s):  
W. Kruppa ◽  
J.B. Boos

1994 ◽  
Vol 72 (7) ◽  
pp. 940-945 ◽  
Author(s):  
R. Lennihan ◽  
D. M. Chapin ◽  
L. G. Dickson

Nostoc commune, a colonial cyanobacterium, has been suggested as an important contributor of nitrogen to terrestrial ecosystems in the Canadian High Arctic, yet little is known about the ecophysiology of this organism in arctic environments. This study focused on the physiological performance of macroscopic colonies of N. commune found on Devon Island, N.W.T. The objectives were to examine the influence of temperature, colony morphology, and seasonal phenology on nitrogen fixation rates and the effects of light and temperature on photosynthesis. Maximum rates of acetylene reduction in N. commune (2119 nmol C2H4∙g−1∙h−1) were higher than those previously recorded for arctic N. commune but lower than values reported for temperate poulations. Depending on the time of the growing season, the temperature optimum for acetylene reduction varied from 15 °C to greater than 20 °C. Photosynthetic temperature optima did not occur below 20–25 °C (the highest temperatures measured). Light saturation of photosynthesis was reached at low levels of irradiance (100–150 μmol∙m−2∙s−1 PPFD). Acetylene reduction rates varied strongly with colony morphology. Thin, fragile, flattened colonies had higher rates than thicker, more resilient, flattened colonies or spherical colonies. Cold post-thaw temperatures appeared to delay the recovery of maximum nitrogen fixation rates for 2–3 weeks following the onset of the growing season. Compared with two other species of cyanobacteria present on Truelove Lowland (Gloeocapsa alpina and Gleotrichia sp.), N. commune had higher rates of nitrogen fixation. Key words: Nostoc commune, cyanobacteria, High Arctic, nitrogen fixation, photosynthesis.


Author(s):  
Maikel Ballester

Rate coefficients of bi-molecular chemical reactions are fundamental for kinetic models. The rate coefficient dependence on temperature is commonly extracted from the analyses of the reaction minimum energy path. However, a full dimension study of the same reaction may suggest a different asymptotic low-temperature limit in the rate constant than the obtained from the energetic profile.


2012 ◽  
Vol 24 (27) ◽  
pp. 276004 ◽  
Author(s):  
J I Pérez-Landazábal ◽  
V Recarte ◽  
V Sánchez-Alarcos ◽  
V A Chernenko ◽  
J M Barandiarán ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document