Production of gaseous nitrogen compounds in a novel process for ammonium removal

2002 ◽  
Vol 46 (1-2) ◽  
pp. 215-222 ◽  
Author(s):  
M. Green ◽  
N. Denekamp ◽  
O. Lahav ◽  
S. Tarre

The production of gaseous nitrogen compounds, particularly the greenhouse gas nitrous oxide, was investigated in a novel process for ammonium removal from wastewater. The process is based on the adsorption of ammonium on zeolite followed by bioregeneration. The zeolite serves the dual purpose of an ion exchanger and a physical carrier for nitrifying bacteria which bio-regenerate the ammonium saturated mineral. An analysis of the nitrifying population composition in the reactor fed with simulated secondary effluent (NH4+ = 50 mg/l) revealed that about half of the bacteria in the biofilm were common ammonium oxidizers Nitrosococcus mobilis and Nitrosomonas, while the other half were nitrite oxidizers. The amount of nitrogen losses, under different conditions, and the identification of the emitted gases (N2 or N2O) were investigated in two sets of experiments: (I) batch experiments using biomass originating from the ion exchange reactor with and without the addition of nitrite, and (II) continuous experiments using the ion exchange reactor with zeolite as the biomass carrier. In the batch experiments, nitrite and oxygen concentrations were determined as the major parameters responsible for the formation of gaseous nitrogen gas during ammonia oxidation by autotrophic bacteria. Continuous experiments showed that the major parameter significantly affecting nitrogen losses was the amount of ammonium adsorbed by the zeolite during the ion exchange phase. The amount of ammonium adsorbed determines the ammonium concentration during the initial period of bioregeneration, which in turn directly influences oxygen demand and the resulting concentrations of oxygen and nitrite. It was concluded that the formation of nitrogen gas compounds in the ion exchange/bioregeneration process can be eliminated by adjusting the operational regime to have a shorter adsorption phase resulting in smaller amounts of ammonium adsorbed per cycle.

2010 ◽  
Vol 62 (7) ◽  
pp. 1551-1559 ◽  
Author(s):  
J. Haneke ◽  
N. M. Lee ◽  
T. W. Gaul ◽  
H. F. A. Van den Weghe

Exhaust air treatment has gained importance as an essential factor in intensive livestock areas due to the rising emissions in the environment. Wet filter walls of multi-stage exhaust air treatment systems precipitate gaseous ammonia and dust particles from exhaust air in washing water. Microbial communities in the biomass developed in the washing water of five large-scale exhaust air treatment units of pig housing facilities, were investigated by fluorescence in situ hybridization (FISH) and 16S rDNA sequence analyses. No “standard” nitrifying bacteria were found in the washing water. Instead mainly α-Proteobacteria, aggregating β- and χ-Proteobacteria, a large number of Actinobacteria, as well as individual Planctomycetales and Crenarchaeota were detected after more than twelve months' operation. The main Proteobacteria species present were affiliated to the families Alcaligenaceae, Comamonadaceae and Xanthomonadaceae. Furthermore, we investigated the consumption of inorganic nitrogen compounds in the washing water of one exhaust air treatment unit during a fattening period with and without pH control. Maintaining the pH at 6.0 resulted in a ca. fivefold higher ammonium concentration and a ca. fourfold lower concentration of oxidized nitrogen compounds after the fattening period was finished.


2009 ◽  
Vol 60 (1) ◽  
pp. 201-210 ◽  
Author(s):  
T. Wirthensohn ◽  
F. Waeger ◽  
L. Jelinek ◽  
W. Fuchs

The effluent of a 500 kW biogas plant is treated with a solid separation, a micro filtration and a reverse osmosis to achieve nutrient recovery and an effluent quality which should meet disposal quality into public water bodies. After the reverse osmosis, the ammonium concentration is still high (NH4-N = 467 mg/l), amongst other cations (K+=85 mg/l; Na+=67 mg/l; Mg2 + =0.74 mg/l; Ca2 + =1.79 mg/l). The aim of this study was to remove this ammonium by ion exchange. Acidic gel cation exchange resins and clinoptilolite were tested in column experiments to evaluate their capacity, flow rates and pH. Amberjet 1,500 H was the most efficient resin, 57 BV of the substrate could be treated, 1.97 mol NH4-N/l resin were removed. The ammonium removal was more than 99% and the quality of the effluent was very satisfactory (NH4-N < 2 mg/l). The breakthrough of the observed parameters happened suddenly, the order was sodium—pH—ammonium—potassium. The sharp increase of the pH facilitates the online control, while the change in conductivity is less significant. A regeneration with 3 bed volumes of 2  M HCl recovered 91.7% of the original cation exchange capacity.


2018 ◽  
Vol 78 (6) ◽  
pp. 1417-1425 ◽  
Author(s):  
Kyujin Ham ◽  
Beom Seok Kim ◽  
Kwon-Young Choi

Abstract In this study, the optimum ammonium removal by activation of synthetic zeolite in the aqueous phase was investigated by batch ion exchange adsorption assay, and its surface changes due to activation modification was elucidated accordingly. Among the adsorbents examined, modified synthetic zeolite A-4 was the most effective at ammonium removal. The best activation condition of zeolite A-4 was established by Na+ and 300 °C heat treatment at pH around 6 to 7. Besides, the removal efficiency was investigated under various reaction conditions of pH, adsorbent dosage, stirring speed, and initial ammonium concentration. Finally, the adsorptive capacity Qe of synthetic zeolite A-4 activated by Na+ and heat treatment was determined as 31.9 mg/g at 1,000 mg-N/L of ammonium, whereas that of natural zeolite was measured as 16.0 mg/g. The obtained adsorption data was fitted to both Langmuir and Freundlich isotherm models, and the Langmuir isotherm model provided a better correspondence than the Freundlich isotherm. Finally, regeneration cycles for synthetic zeolite A-4 was determined for further industrial applications and efficient ammonium removal.


Minerals ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 499 ◽  
Author(s):  
Huei-Fen Chen ◽  
Yi-Jun Lin ◽  
Bo-Hong Chen ◽  
Iizuka Yoshiyuki ◽  
Sofia Liou ◽  
...  

We investigated the ammonium removal abilities of natural and synthetic zeolites with distinct Si/Al ratios and various surface areas to study how adsorption and ion exchange processes in zeolites perform under different ammonium concentrations and different temperatures. Five zeolites—natural mordenite, chabazite, erionite, clinoptilolite, and synthetic merlinoite—were immersed in 20, 50, and 100 mg/kg ammonium solutions. The results demonstrate that zeolites under high ammonium concentrations (100 mg/kg) possess higher physical adsorption capacity (0.398–0.468 meq/g), whereas those under lower ammonium concentrations (20 mg/kg) possess greater ion exchange properties (64–99%). The ion exchange ability of zeolites is extremely dependent on the cation content of the zeolites, and the cation content is affected by the Si/Al ratio. The surface area of zeolites also has a partial influence on its physical adsorption ability. When the surface area is less than 100 m2/g, the adsorption ability of zeolite increases obviously with surface area; however, adsorption ability is saturated as the surface area becomes larger than this critical value of 100 m2/g. When we placed the zeolites in 50 mg/kg ammonium concentration at different temperatures (5–50 °C), we found that the zeolites exhibited the highest ammonium removal ability at 30 °C and the potassium release was enhanced at 30–40 °C.


1996 ◽  
Vol 34 (1-2) ◽  
pp. 449-458 ◽  
Author(s):  
Michal Green ◽  
Adriaan Mels ◽  
Ori Lahav ◽  
Sheldon Tarre

A new concept for ammonium removal from secondary effluent by zeolite followed by bio-regeneration has been studied. In contrast to other studies of hybrid biological-ion exchange multireactor systems, the proposed process uses the ion exchange material, zeolite, as the carrier for the nitrifying biomass. This enables the two mode process to be carried out in a single reactor. In the first mode (ion exchange), secondary effluent is passed through an ion exchange column where ammonium is concentrated in the zeolite. During the second mode (bioregeneration), the absorbed ammonium is released gradually and converted to nitrate by the active biomass residing on the zeolite. Nitrification is carried out batchwise and in a small volume reactor where optimal conditions can easily be maintained. Moreover, the addition of chemicals for the desorption of ammonium is minimal due to regenerant reuse during several cycles of nitrification. As a result, operational costs and production of large volumes of brine are minimized. Batch and breakthrough experiments showed that the amount of ammonium adsorbed on the chabazite is strongly affected by the presence of competing cations present in secondary effluent. A reduction of about 75% was observed when using a typical Israeli sewage ion composition. The attached biomass did not significantly effect the efficiency of the ion exchange column. Ammonium desorption experiments showed that regeneration with 10,000 mg/L Na+ is much faster than with 2440 mg/L (more than 90% ammonium recovery after 40 and 70 bed volumes, respectively). A nitrification rate of 6 g NH4-N/(L reactor *day) was obtained in a fluidized bed reactor with chabazite as the carrier. Although this rate is in the high range of reported values for biofilm reactors, desorption experiments proved that nitrification will be the process's rate limiting step, rather than the desorption rate when regenerant solutions as low as 2440 mg/L Na+ are used.


Author(s):  
Huei-Fen Chen ◽  
Yi-Jun Lin ◽  
Bo-Hong Chen ◽  
Iizuka Yoshiyuki ◽  
Sofia Ya-Hsuan Liou ◽  
...  

We investigate the ammonium removal abilities of natural and synthetic zeolites, which have distinct Si/Al ratios and various surface areas, to study how adsorption and ion-exchange processes in zeolites perform under different ammonium concentrations and different temperatures. Five zeolites including natural mordenite, chabazite, erionite, clinoptilolite and synthetic merlinoite were immersed in 20 mg/kg, 50 mg/kg and 100 mg/kg ammonium solutions. The results demonstrate that zeolites under high ammonium concentrations (100 mg/kg) possess higher physical adsorption capacity (0.398–0.468 meq/g), whereas those under lower ammonium concentrations (20 mg/kg) possess greater ion-exchange property (64–99%). The ion-exchange ability of zeolites are extremely dependent on the cation content of the zeolites, and the cation content is affected by the Si/Al ratio. The surface area of zeolites also has a partial influence on its physical adsorption ability. When the surface area is less than 100 m2/g, the adsorption ability of zeolite increases obviously with surface area; however, adsorption ability is saturated as the surface area becomes larger than this critical value of 100 m2/g. When we carried out the zeolites in 50 mg/kg ammonium concentration at different temperatures (5~50 ℃), we found that zeolites exhibit the highest ammonium removal ability at 30°C and the potassium release was enhanced at 30~40 ℃.


2013 ◽  
Vol 726-731 ◽  
pp. 406-411 ◽  
Author(s):  
Duo Ying Zhang ◽  
Wei Guang Li ◽  
Wen Qin ◽  
Xiao Fei Huang

For reducing ammonium concentration and guaranteeing safe drinking water, three heterotrophic bacteria were isolated from the Songhua River, which were SFA6, SFA7 and SFA11. When the initial ammonium concentration was about 130 mg/L, the ammonium removal rate of the strains SFA7, SFA6 and SFA 11 were 1.54 mg NH4+/L/h, 1.20 mg NH4+/L/h and 1.27 mg NH4+/L/h respectively at 8 °C. The 16S rDNA sequence results revealed that the strain SFA6 wasBacillus subtilis, SFA7 wasPseudomonas putida, and SFA11 showed similarity toPseudomonas nitroreducens. The biochemical characteristics of SFA6 were quite different from that of SFA7 and SFA11. After 48 h degradation, the NH4+-N (about 5 mg/L) was consumed to 0.23±0.15 mg/L, 0.37±0.20 mg/Land 0.58±0.17 mg/L by the strains SFA6, SFA7 and SFA11, with little NO3--N and NO2--N accumulation. Above all, the strains SFA6, SFA7 and SFA11 could be used in drinking water treatment at 8 °C. The strain SFA6 showed the highest ammonium removal efficiency.


Sign in / Sign up

Export Citation Format

Share Document