Free water surface wetlands for wastewater treatment in Sweden: nitrogen and phosphorus removal

2005 ◽  
Vol 51 (9) ◽  
pp. 39-46 ◽  
Author(s):  
J.L. Andersson ◽  
S. Kallner Bastviken ◽  
K.S. Tonderski

In South Sweden, free water surface wetlands have been built to treat wastewater from municipal wastewater treatment plants. Commonly, nitrogen removal has been the prime aim, though a significant removal of tot-P and BOD7 has been observed. In this study, performance data for 3–8 years from four large (20–28 ha) FWS wetlands have been evaluated. Two of them receive effluent from WWTP with only mechanical and chemical treatment. At the other two, the wastewater has also been treated biologically resulting in lower concentrations of BOD7 and NH4+-N. The wetlands performed satisfactorily and removed 0.7–1.5 ton N ha−1 yr−1 as an average for the time period investigated, with loads between 1.7 and 6.3 ton N ha−1 yr−1. Treatment capacity depended on the pre-treatment of the water, as reflected in the k20-values for N removal (first order area based model). In the wetlands with no biological pre-treatment, the k20-values were 0.61 and 1.1 m month−1, whereas for the other two they were 1.7 and 2.5 m month−1. P removal varied between 10 and 41 kg ha−1 yr−1, and was related to differences in loads, P speciation and to the internal cycling of P in the wetlands.

1994 ◽  
Vol 29 (4) ◽  
pp. 1-6 ◽  
Author(s):  
Ronald W. Crites

Constructed wetlands are categorized into two types: free water surface flow or subsurface flow. Design criteria are set out for both types and operational details are given for both municipal wastewater treatment plants.


1997 ◽  
Vol 35 (6) ◽  
pp. 63-70 ◽  
Author(s):  
Yoshimasa Watanabe ◽  
Yoshihiko Iwasaki

This paper describes a pilot plant study on the performance of a hybrid small municipal wastewater treatment system consisting of a jet mixed separator(JMS) and upgraded RBC. The JMS was used as a pre-treatment of the RBC instead of the primary clarifier. The treatment capacity of the system was fixed at 100 m3/d, corresponding to the hydraulic loading to the RBC of 117 L/m2/d. The effluent from the grid chamber at a municipal wastewater treatment plant was fed into the hybrid system. The RBC was operated using the electric power produced by a solar electric generation panel with a surface area of 8 m2 under enough sunlight. In order to reduce the organic loading to the RBC, polyaluminium chloride(PAC) was added to the JMS influent to remove the colloidal and suspended organic particles. At the operational condition where the A1 dosage and hydraulic retention time of the JMS were fixed at 5 g/m3 and 45 min., respectively, the average effluent water quality of hybrid system was as follows: TOC=8 g/m3, Total BOD=8 g/m3, SS=8 g/m3, Turbidity=6 TU, NH4-N=7 g/m3, T-P=0.5 g/m3. In this operating condition, electric power consumption of the RBC for treating unit volume of wastewater is only 0.07 KWH/m3.


2003 ◽  
Vol 48 (5) ◽  
pp. 257-266 ◽  
Author(s):  
K. Boonsong ◽  
S. Piyatiratitivorakul ◽  
P. Patanaponpaiboon

The study evaluated the possibility of using mangrove plantation to treat municipal wastewater. Two types of pilot scale (100 × 150 m2) free water surface constructed wetland were set up. One system was a natural Avicennia marina dominated forest system. The other system was a newly planted system in which seedlings of Rhizophora spp., A. marina, Bruguiera cylindrica and Ceriops tagal were planted in 4 strips. Municipal wastewater was retained within the systems for 7 and 3 days, respectively. The results indicated that the average removal percentage of TSS, BOD, NO3-N, NH4-N, TN, PO4-P and TP in the newly planted system were 27.6-77.1, 43.9-53.9, 37.6-47.5, 81.1-85.9, 44.8-54.4, 24.7-76.8 and 22.6-65.3, respectively. Whereas the removal percentage of those parameters in the natural forest system were 17.1-65.9, 49.5-51.1, 44.0-60.9, 51.1-83.5, 43.4-50.4, 28.7-58.9 and 28.3-48.0, respectively. Generally, the removal percentages within the newly planted system and the natural forest system were not significantly different. However, when the removal percentages were compared with detention time, TSS, PO4-P and TP percentages removed were significantly higher in the 7-day detention time treatment. Even though the removal percentages were highly varied and temporally dependent, the overall results showed that mangrove plantation could be used as constructed wetland for municipal wastewater treatment in a similar way to the natural mangrove system.


2003 ◽  
Vol 48 (1) ◽  
pp. 77-85 ◽  
Author(s):  
X.-D. Hao ◽  
M.C.M. van Loosdrecht

Water problems have to be solved in an integrated way, and sustainability has become a major issue. For this reason, developing more sustainable wastewater treatment processes is needed. New discoveries and good understanding on microbial conversions of nitrogen and phosphorus make more sustainable processes possible. New options for decentralized sustainable sanitation are generally compared to conventional sewage systems, we think that for a proper comparison also innovative centralized treatment schemes should be evaluated. In this article, a more sustainable WWTP is proposed for municipal wastewater treatment, mainly based on the principles of denitrifying dephosphatation and anaerobic ammonium oxidation (ANAMMOX). The proposed system consists of a first stage of the A/B process in which maximal sludge production is achieved. In this way, COD is regained as sludge for methanation. The following BCFS® and CANON processes can remove N and P with minimal or no COD need. As a potential fertiliser, struvite can easily be removed from the sludge water by adding magnesium compounds. A case study is done on the basis of the mass balance over the proposed plant. The effluent from the system has a good quality to be recycled. This could also make a contribution to meeting the world's water needs and lessening the impact on the world's water environment. Since all the separate units are already applied or tested on pilot-scale, no problems for technical implementation are foreseen.


2020 ◽  
Vol 8 (10) ◽  
pp. 1604
Author(s):  
Mikhail V. Semenov ◽  
George S. Krasnov ◽  
Ksenia Y. Rybka ◽  
Sergey L. Kharitonov ◽  
Yulia A. Zavgorodnyaya ◽  
...  

Constructed wetlands (CWs) are complicated ecosystems that include vegetation, sediments, and the associated microbiome mediating numerous processes in wastewater treatment. CWs have various functional zones where contrasting biochemical processes occur. Since these zones are characterized by different particle-size composition, physicochemical conditions, and vegetation, one can expect the presence of distinct microbiomes across different CW zones. Here, we investigated spatial changes in microbiomes along different functional zones of a free-water surface wetland located in Moscow, Russia. The microbiome structure was analyzed using Illumina MiSeq amplicon sequencing. We also determined particle diameter and surface area of sediments, as well as chemical composition of organic pollutants in different CW zones. Specific organic particle aggregates similar to activated sludge flocs were identified in the sediments. The highest accumulation of hydrocarbons was found in the zones with predominant sedimentation of fine fractions. Phytofilters had the highest rate of organic pollutants decomposition and predominance of Smithella, Ignavibacterium, and Methanothrix. The sedimentation tank had lower microbial diversity, and higher relative abundances of Parcubacteria, Proteiniclasticum, and Macellibacteroides, as well as higher predicted abundances of genes related to methanogenesis and methanotrophy. Thus, spatial changes in microbiomes of constructed wetlands can be associated with different types of wastewater treatment processes.


2010 ◽  
Vol 28 (4) ◽  
pp. 209-217 ◽  
Author(s):  
Sarah A. White ◽  
Milton D. Taylor ◽  
Stewart L. Chandler ◽  
Ted Whitwell ◽  
Stephen J. Klaine

Abstract Agricultural operations face increasing pressure to remediate runoff to reduce deterioration of surface water quality. Some nursery operations use free water surface constructed wetland systems (CWSs) to remediate nutrient-rich runoff. Our objectives were twofold, first to examine the impact of two hydraulic retention times (HRT, 3.5 and 5.5 day) on CWS performance, and second to determine if increased nutrient loading from internal CWS and nursery sources during the spring contributed to nutrient export in excess of regulatory limits. We quantified nutrient loading and removal efficiency in a free water surface CWS from late winter through late spring over three years and monitored various water quality parameters. Total nitrogen in runoff was reduced from 20.6 ± 2.8 mg·liter−1 (ppm) to 4.1 ± 1.3 mg·liter−1 (ppm) nitrogen after CWS treatment. Phosphorus dynamics in the CWS were more variable and unlike nitrogen dynamics were not consistently influenced by water temperature and hydraulic loading rate. Phosphorus concentrations were reduced from 1.7 ± 0.8 mg·liter−1 (ppm) PO4-P in influent to 1.2 ± 0.6 mg·liter−1 (ppm) PO4-P in CWS effluent, but substantial variability existed among years in both phosphorus loading and removal rates. The CWS was able to efficiently remediate nitrogen even under high spring loading rates.


Sign in / Sign up

Export Citation Format

Share Document