Characterization of sludge structure and activity in submerged membrane bioreactor

2005 ◽  
Vol 52 (10-11) ◽  
pp. 401-408 ◽  
Author(s):  
M. Spérandio ◽  
A. Masse ◽  
M.C. Espinosa-Bouchot ◽  
C. Cabassud

Sludge characteristics of a submerged membrane bioreactor (MBR) and an activated sludge process (AS) were compared, during a first phase at the same operating conditions (low MLSS and conventional SRT) and in a second phase with a high sludge retention time (SRT) in the membrane bioreactor. During the first phase, a bimodal flocs size distribution was observed in the MBR with simultaneously a macro-flocs population (240μm) bigger than the flocs of activated sludge due to the absence of recirculating pump, and also more microflocs (1 to 15μm) and free suspended cells retained by the membrane. It is shown that the membrane leads to an accumulation of proteins and polysaccharides in the sludge supernatant which is probably responsible for the high fouling propensity of the sludge during the starting period of MBR. These compounds are partially degraded after 50 to 60 days of operation. In the first phase respirometric experiments didn't demonstrate a significant difference in the maximal removal rates of either MBR or AS biomass (with excess substrate), except in the dynamic period during which the membrane retention gave an advantage by increasing the biomass activity. On the other hand, the respirometry shows that the half saturation constant for nitrification was significantly higher in the MBR process, suggesting higher substrate transfer limitation. During the last phase, it is shown that an increase of SRT from 9 to 106 days leads to a diminution of average macro-flocs size in the MBR from about 240 to 70μm. With the SRT increase, modification in the organic compounds is also observed (proteins, polysaccharides and COD) in the sludge supernatant. Increasing the SRT from 9 to 40 days seems to slightly reduce the level of organic compounds (probable biodegradation), but the concentrations increased when SRT changes from 40 days to 106 days (probable accumulation of non biodegradable compounds).

2012 ◽  
Vol 610-613 ◽  
pp. 1426-1431 ◽  
Author(s):  
Yuan Hong Ding ◽  
Qing Wang ◽  
Hong Qiang Ren

a submerged membrane bioreactor was used to treat the effluent of a pharmaceutical wastewater treatment system, the treated water is rich in ammonia nitrogen and organic compounds (NH4-N, averaged in 78.1 mg/L; COD, averaged in 189.5 mg/L), the final effluent of membrane bioreactor was stably below 50 mg/L COD and 40 mg/L NH4-N respectively, the activity of nitrifying bacteria was inhibited by high concentrations of organic compounds and ammonia nitrogen, a rapid declination of filtration was probably resulted form high concentrations of organic compounds and biomass.


2011 ◽  
Vol 63 (9) ◽  
pp. 1906-1912 ◽  
Author(s):  
Simos Malamis ◽  
Andreas Andreadakis ◽  
Daniel Mamais ◽  
Constantinos Noutsopoulos

The aim of this work was to evaluate the long-term performance of a Membrane Bioreactor (MBR) that operated continuously for 2.5 years and to assess membrane fouling and biomass activity under various operating conditions. Furthermore, a method for the characterisation of influent wastewater was developed based on its separation into various fractions. The MBR system operated at the solids retention times (SRT) of 10, 15, 20 and 33 days. The increase of SRT resulted in a decrease of the fouling rate associated with the reduction of extracellular polymeric substances. Moreover, the SRT increase resulted in a significant reduction of the Oxygen Uptake Rate (OUR) due to the lower availability of substrate and in a notable decrease of the maximum OUR since high SRT allowed the development of slower growing microorganisms. Biomass consisted of small flocs due to extensive deflocculation caused by intense aeration. Finally, the method developed for wastewater characterisation is straightforward and less time consuming than the usual method that is employed.


2020 ◽  
Vol 96 (5) ◽  
Author(s):  
Shaoqing Zhang ◽  
Bing Li ◽  
Zhong Yu ◽  
Fangang Meng

ABSTRACT The size of bacterial aggregates can determine both nutrient removal and sludge/water separation in activated sludge processes. In this study, the bacterial community structures and network associations of different sized aggregates obtained from a full-scale membrane bioreactor plant over a one-year period were investigated. Our results showed that biodiversity of larger sized aggregates was significantly higher than that of smaller ones and that the bacterial compositions of different sized aggregates differed significantly from each other. Bacteria related to nutrient removal (e.g. denitrification, hydrolysis and fermentation) were found to be significantly more abundant in larger aggregates than smaller ones. Network analysis revealed significant difference in species–species interactions, topological roles of individual OTU and keystone populations among different sized aggregates. Moreover, the occurrence of keystone OTUs affiliated with denitrifiers (Thermomonas) in networks of large and medium aggregates may suggest that denitrification influences bacterial interactions in large and medium aggregates. Overall, our results indicate the aggregates size-dependence of bacterial community separation in activated sludge. The current findings not only can provide guidance for process design and operation optimization, but also highlight the necessity for paying more attentions to the aggregate-based community, metabolic function and gene expression of activated sludge in future studies.


2020 ◽  
Vol 145 ◽  
pp. 02076
Author(s):  
Wenzhong Liang ◽  
Zhipeng Zhuang ◽  
Yutao Lei ◽  
Zhihua Pang ◽  
Weijian Zhou

The aim of this work was to investigate the biomass proliferation and its impact on the operation of a submerged membrane bioreactor (sMBR). A programmable logic controller (PLC) was used to control the process of the sMBR with no discharge of sludge. When MLSS was 9670 mg/L and the solid retention times (SRT) ranged from 20 to 40 days, the optimal removal efficiencies of COD, NH3-N, TP were 93.89%, 93.02%, 80.57%, respectively. Accompanying with the decreasing of the sludge loading, the substrate and nutrition were insufficient in the sMBR, leading to endogenous respiration of the activated sludge, which decreased the activity of sludge and resulted in the death of more microorganisms.


2006 ◽  
Vol 18 (5) ◽  
pp. 897-902 ◽  
Author(s):  
Shui-li YU ◽  
Fang-bo ZHAO ◽  
Xiao-hui ZHANG ◽  
Guo-lin JING ◽  
Xiang-hua ZHEN

Sign in / Sign up

Export Citation Format

Share Document