Combining UASB and the “fourth generation” down-flow hanging sponge reactor for municipal wastewater treatment

2006 ◽  
Vol 53 (3) ◽  
pp. 209-218 ◽  
Author(s):  
M. Tandukar ◽  
S. Uemura ◽  
A. Ohashi ◽  
H. Harada

A “fourth generation” down-flow hanging sponge (DHS) Reactor has been developed and proposed as an improved variant of post-treatment system for UASB treating domestic wastewater. This paper evaluates the potential of the proposed combination of UASB and DHS as a sewage treatment system, especially for developing countries. A pilot-scale UASB (1.15 m3) and DHS (0.38 m3; volume of sponge) was installed in a municipal sewage treatment site and constantly monitored for 2 years. UASB was operated at an HRT of 6 h corresponding to an organic load of 2.15 kg-COD/m3 per day. Subsequently, the organic load in DHS was 2.35 kg-COD/m3 per day, operated at an HRT of 2 h. Organic removal by the whole system was satisfactory, accomplishing 96% of unfiltered BOD removal and 91% of unfiltered COD removal. However, nitrification decreased from 56% during the startup period to 28% afterwards. Investigation on DHS sludge was made by quantifying it and evaluating oxygen uptake rates with various substrates. Average concentration of trapped biomass was 26 g-VSS/L of sponge volume, increasing the SRT of the system to 100–125 d. Removal of coliforms obtained was 3–4 log10 with the final count of 103 to 104 MPN/100 ml in DHS effluent.

2005 ◽  
Vol 52 (1-2) ◽  
pp. 323-329 ◽  
Author(s):  
M. Tandukar ◽  
S. Uemura ◽  
I. Machdar ◽  
A. Ohashi ◽  
H. Harada

This paper presents an evaluation of the process performance of a pilot-scale “fourth generation” downflow hanging sponge (DHS) post-treatment system combined with a UASB pretreatment unit treating municipal wastewater. After the successful operation of the second- and third-generation DHS reactors, the fourth-generation DHS reactor was developed to overcome a few shortcomings of its predecessors. This reactor was designed to further enhance the treatment efficiency and simplify the construction process in real scale, especially for the application in developing countries. Configuration of the reactor was modified to enhance the dissolution of air into the wastewater and to avert the possible clogging of the reactor especially during sudden washout from the UASB reactor. The whole system was operated at a total hydraulic retention time (HRT) of 8 h (UASB: 6 h and DHS: 2 h) for a period of over 600 days.The combined system was able to remove 96% of unfiltered BOD with only 9 mg/L remaining in the final effluent. Likewise, F. coli were removed by 3.45 log with the final count of 103 to 104 MPN/100 ml. Nutrient removal by the system was also satisfactory.


2003 ◽  
Vol 47 (11) ◽  
pp. 153-156 ◽  
Author(s):  
J.-S. Kim ◽  
Y.-W. Hwang ◽  
C.-G. Kim ◽  
J.-H. Bae

This study was performed to develop a granular sulfur packed nitrification/denitrification process employing a uniquely designed single biofilter, which treated a relatively low carbon loaded domestic wastewater taken from a primary clarifier at a municipal wastewater treatment facility. The system was tested on varying experimental conditions, e.g. inflow flow, organic load and nitrogen load. Regardless of flow rate being increased, SS and COD was unvaryingly removed up to 90 and 80%, respectively. Moreover, TKN was also decomposed up to 90%. Increase in COD load gradually led to escalating level of non-biodegradable compounds observed in effluent. Nitrification was accomplished as high as 92%, whereas denitrification was achieved up to approximately 87%. For a while, nitrification and denitrification were observed at 0.65 and 0.55 kg/m3áday, respectively. Eventually, T-N was decomposed as high as 46%. It was concluded that granular sulfur can be used for not only electron donor, but also for a media to properly treat low carbon loaded wastewater and to filter SS efficiently.


2020 ◽  
Vol 15 (1) ◽  
pp. 160-169 ◽  
Author(s):  
Yeshi Cao ◽  
M. C. M. Van Loosdrecht ◽  
Glen. T. Daigger

Abstract Since about the 1990s China has achieved remarkable progress in urban sanitation. The country has built very extensive infrastructure for wastewater treatment, with 94.5% treatment coverage in urban areas and legally mandated nation-wide full nutrient removal implemented. However, municipal wastewater treatment plants (WWTPs) in China are still confronted with issues rooted in the unique sewage characteristics. This study compares energy recovery, cost of nutrient removal and sludge production between Chinese municipal WWTPs and those in countries with longer wastewater treatment traditions, and highlights the cause-effect relationships between Chinese sewage characteristics – high inorganic suspended solids (ISS) loads, and low COD and C/N ratio, and municipal WWTP process performance in China. Integrated design and operation guidelines for municipal WWTPs are imperative in relation to the unique sewage characteristics in China. Cost-effective measures and solutions are proposed in the paper, and the potential benefits of improving the sustainability of municipal WWTPs in China are estimated.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
George Tangyie Chi ◽  
John Churchley ◽  
Katherine D. Huddersman

The pollution of water sources by endocrine disrupting compounds (EDCs) and pharmaceutical and personal care products (PPCPs) is a growing concern, as conventional municipal wastewater treatment systems are not capable of completely removing these contaminants. A continuous stir tank reactor incorporating a modified polyacrylonitrile (PAN) catalyst and dosed with hydrogen peroxide in a heterogeneous Fenton’s process was used at pilot scale to remove these compounds from wastewater that has undergone previous treatment via a conventional wastewater treatment system. The treatment system was effective at ambient temperature and at the natural pH of the wastewater. High levels of both natural and synthetic hormones (EDCs) and PPCPs were found in the effluent after biological treatment of the wastewater. The treatment system incorporating the modified PAN catalyst/H2O2decomposed >90% of the EDCs and >40% of PPCPs using 200 mgL−1H2O2, 3 hr residence time. The estrogenic potency EE2-EQ was removed by 82.77%, 91.36%, and 96.13% from three different wastewater treatment plants. BOD was completely removed (below detection limits); 30%–40% mineralisation was achieved and turbidity reduced by more than 68%. There was a <4% loss in iron content on the catalyst over the study period, suggesting negligible leaching of the catalyst.


Proceedings ◽  
2019 ◽  
Vol 16 (1) ◽  
pp. 18
Author(s):  
Magdalena Łój-Pilch ◽  
Anita Zakrzewska ◽  
Ewa Zielewicz

Risk management, an aspect of which is risk assessment, is a process supporting the proper function of municipal sewage treatment plants. Many factors affect the quality of treated wastewater. Risk assessment, its analysis, and hierarchization permit the elimination of events with the most destructive impacts on the purification process.


2011 ◽  
Vol 383-390 ◽  
pp. 3422-3427
Author(s):  
Yan Li ◽  
Yan Qiu Zhang

For engineering research, ECOSUNIDE technique was applied in a sewage treatment plant under low temperature and low carbon resource. The whole experimental system has being running steadily after reasonable adjustments of influent distribution, returned sludge ratio and DO. The effluent qualities meet the Class I-B Criteria Specified in Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant (GB18918-2002).Effluent BOD5 and NH3-N meet the Class I-A Criteria. The results indicates that the treatment capacity could fluctuate within a range of ±3000 m3/d with DO properly controlled. In aerobic sections, the best DO was 2-3 mg/L. The optimal sludge emission amount could be attained through settlement ratio and sludge concentration with the present emission amount of sludge of 680 m3/d. It might be the restrictive factor that BOD/TN was less than 3 on TN removal which could not steadily achieve the Class I-A Criteria.


1995 ◽  
Vol 31 (3-4) ◽  
pp. 295-298 ◽  
Author(s):  
M. Krofta ◽  
D. Miskovic ◽  
D. Burgess

A pilot system containing a particularly designed configuration of primary flotation unit and a combined flotation-filtration clarifier, was used for advanced municipal wastewater treatment. The system which was investigated demonstrated the feasibility of municipal wastewater treatment by the flotation separation of fluid and coagulated-flocculated solids (Total suspended solids (TSS), organic load, Phosphorous (P), Total Kjeldahl Nitrogen (TKN)) without using microbiological oxidation. The particular objective herein was to create a preliminary approach to theoretical evaluation of positive pilot-study results in the form of two kinetic models. Based on positive pilot results, and kinetic analysis, the following conclusions were reached:A double-stage flotation/filtration system might be a viable alternative for municipal wastewater treatment.Empirical models and prediction developed here reflect the kinetics of the removal of coagulated and flocculated solids by flotation.


2013 ◽  
Vol 67 (7) ◽  
pp. 1590-1598 ◽  
Author(s):  
F. Masi ◽  
S. Caffaz ◽  
A. Ghrabi

In the present paper the detailed design and performances of two municipal wastewater treatment plants, a four-stage constructed wetlands (CW) system located in the city of Dicomano (about 3,500 inhabitants) in Italy, and a three-stage CW system for the village of Chorfech (about 500 inhabitants) in Tunisia, are presented. The obtained results demonstrate that multi-stage CWs provide an excellent secondary treatment for wastewaters with variable operative conditions, reaching also an appropriate effluent quality for reuse. Dicomano CWs have shown good performances, on average 86% of removal for the Organic Load, 60% for Total Nitrogen (TN), 43% for Total Phosphorus (TP), 89% for Total Suspended Solids (TSS) and 76% for Ammonium (NH4+). Even the disinfection process has performed in a very satisfactory way, reaching up to 4–5 logs of reduction of the inlet pathogens concentration, with an Escherichia coli average concentration in the outlet often below 200 UFC/100 mL. The mean overall removal rates of the Chorfech CWs during the monitored period have been, respectively, equal to 97% for TSS and Biochemical Oxygen Demand (BOD5), 95% for Chemical Oxygen Demand (COD), 71% for TN and 82% for TP. The observed removal of E. coli by the CW system was in this case 2.5 log units.


Molecules ◽  
2019 ◽  
Vol 25 (1) ◽  
pp. 162 ◽  
Author(s):  
Daniel Wolecki ◽  
Magda Caban ◽  
Magdalena Pazda ◽  
Piotr Stepnowski ◽  
Jolanta Kumirska

The problem of the presence of pharmaceuticals and endocrine disrupting compounds (EDCs) in the environment is closely related to municipal wastewater and in consequence to municipal wastewater treatment plants (MWWTPs) because wastewater is the main way in which these compounds are transferred to the ecosystem. For this reason, the development of cheap, simple but very effective techniques for the removal of such residues from wastewater is very important. In this study, the analysis of the potential of using three new plants: Cyperus papyrus (Papyrus), Lysimachia nemorum (Yellow pimpernel), and Euonymus europaeus (European spindle) by hydroponic cultivation for the removal of 15 selected pharmaceuticals and endocrine disrupting compounds (EDCs) in an MWWTP is presented. In order to obtain the most reliable data, this study was performed using real WWTP conditions and with the determination of the selected analytes in untreated sewage, treated sewage, and in plant materials. For determining the target compounds in plant materials, an Accelerated Solvent Extraction (ASE)-Solid-Phase Extraction (SPE)-GC-MS(SIM) method was developed and validated. The obtained data proved that the elimination efficiency of the investigated substances from wastewater was in the range of 35.8% for diflunisal to above 99.9% for paracetamol, terbutaline, and flurbiprofen. Lysimachia nemorum was the most effective for the uptake of target compounds among the tested plant species. Thus, the application of constructed wetlands for supporting conventional MWWTPs allowed a significant increase in their removal from the wastewater stream.


2003 ◽  
Vol 47 (12) ◽  
pp. 223-230 ◽  
Author(s):  
J.A. Álvarez ◽  
C.A. Zapico ◽  
M. Gómez ◽  
J. Presas ◽  
M. Soto

Raw domestic wastewater from the city of Santiago de Compostela (Northwest Spain) was fed into a pilot-scale hydrolytic up flow sludge bed (HUSB) digester with an active volume of 25.5 m3. The total influent chemical oxygen demand (COD) ranged from 360 to 470 mg/l, the influent SS varied from 190 to 370 mg/l, and the temperature was between 17° and 20°C. The organic load rate (OLR) applied increased step by step from 1.2 to 3.9 kgCOD/m3.d, while the hydraulic retention time (HRT) decreased from 7.1 h to 2.9 h. A high suspended solids (SS) removal of about 82-85% from the influent was reached, most of which (81 to 88%) was eliminated by hydrolysis, while the rest remained in the purge stream. The total COD removal ranged from 46 to 59%. On the other hand, a high acidification of the COD remaining in the effluent was obtained, so the percent COD in the form of volatile fatty acids (VFACOD) with respect to total effluent COD was about 43% for the highest HRT applied, and about 27% for the lowest HRT. The soluble to total COD ratio (CODs/CODt) increased from 25-32% for the influent to 71-86% for the effluent. The results obtained confirm the viability and interest of direct anaerobic hydrolytic pre-treatment of domestic wastewater.


Sign in / Sign up

Export Citation Format

Share Document