Long-term hydraulic and pollution retention performance of infiltration systems

2007 ◽  
Vol 55 (4) ◽  
pp. 235-243 ◽  
Author(s):  
S. Le Coustumer ◽  
S. Barraud

Infiltration techniques are now widely used to manage stormwater in urban areas. These techniques are used and recognized around the world for their many advantages, such as decreasing stormwater flow in sewer systems and recharging groundwater. But numerous cases of infiltration devices that failed after a few years of operation are still being reported. This study, which is based on site-monitoring of operational infiltration systems, is part of the Field Observatory for Urban Water Management (OTHU). The main goals of this study are to improve knowledge of long-term hydraulic behaviour, especially as concerns the clogging speed and the quality of the runoff. This article will present the site, the monitoring process and the model that will be used to assess the hydraulic behaviour. First results of the calibration of the model show that the model is able to assess the hydraulic behaviour of the basin when it is clogged (average value of hydraulic resistance 17.1 h) and when it has been scraped (hydraulic resistance less than 3.8 h). However, further data are needed in order to validate the model. We also show that the experimental setup is well designed to assess the water volume and the sediment brought to the basin with low uncertainties.

2021 ◽  
Author(s):  
Arne Reck ◽  
Mogens Thalmann ◽  
Eva Paton ◽  
Björn Kluge

Abstract Bioretention systems maintain the natural water cycle and help to mitigate climatic extremes impact on urban areas by retarding, storing, and evaporating stormwater runoff. Although bioretention systems have been operated for more than 25 years, systematic investigations on the hydrological functionality and pollutant retention performance of older systems are rare. We employed laboratory and field experiments to investigate three long-term operated bioretention systems in Germany with the following objectives: (i) physico-chemical substrate characterisation; (ii) an event-based influent and effluent trace metal concentration monitoring covering 22 months and (iii) the calculation of metal retention rates. Regarding the pollution status, we found significantly increased trace metal contents in the soil substrate mainly as a function of the drainage area type and the inflow regime. Nonetheless, all measured metal seepage concentrations fall below the German legislative trigger values. Our current findings demonstrate no risk of groundwater degradation even for old bioretention systems suggesting bioretention as a powerful and sustainable tool for stormwater management. Further research requires the handling of soil substrates modified by stormwater infiltration showing enhanced trace metal contents and a certain amount of technogenic sediments.


2011 ◽  
Vol 2 (1) ◽  
pp. 39-44
Author(s):  
T. Csoknyai ◽  
A. Talamon

Abstract In the beginning of August 2009 a long-term monitoring started in a recently built passive house near Isaszeg. The first results were presented in the last year's conference. The present paper gives an overview about a whole-year data evaluation focusing on energy consumption. During the first year of building occupancy three types of heat suppliers and two types of heat exchangers in the ventilation systems were applied and monitored, thus different heating options could be compared.


2002 ◽  
Vol 45 (3) ◽  
pp. 203-210 ◽  
Author(s):  
S. Barraud ◽  
J. Gibert ◽  
T. Winiarski ◽  
J.-L. Bertrand Krajewski

Stormwater infiltration is a drainage mode, which is more and more used in urban areas in France. Given the characteristics of urban surfaces, and especially the loads of various pollutants contained in stormwater, it is important to assess the impact of stormwater infiltration systems on soil and groundwater by carrying out field experiments. The main difficulty is due to the complexity of the system observed and the need of multidisciplinary approaches. Another difficulty is that measurements are carried out in situ, in an uncontrolled environment submitted to quantitatively and qualitatively highly variable interferences. Very long term monitoring is needed to get representative results. In order to contribute to solve these problems, the OTHU project has recently been launched in Lyon (France). One of its key action concerns a long-term (10 years) experiment on an infiltration basin specifically rehabilitated for measurements and operational drainage issues. This paper presents the experimental site, the objectives of the project and the way the monitoring process has been built according to the various disciplines involved (biology, ecology, hydrology, chemistry and soil sciences) and to the will of assessing all the uncertainties in the measurement process.


1999 ◽  
Vol 82 (S 01) ◽  
pp. 171-175 ◽  
Author(s):  
D. Ebert ◽  
M. Langer ◽  
P. Uhrmeister

SummaryThe endovascular treatment of abdominal aortic aneurysms has generated a great deal of interest since the early 1990s, and many different devices are currently available. The procedure of endovascular repair has been evaluated in many institutions and the different devices are compared. The first results were encouraging, but complications like endoleak, dislocation or thrombosis of the graft occurred. By the available devices the stent application is only promising, if the known exclusion criteria are strictly respected. Therefore a careful preinterventional assessment of the patient by different imaging modalities is necessary. As the available results up to now are preliminary and the durability of the devices has to be controlled, multicenter studies are required to improve the devices and observe their long- term success in the exclusion of abdominal aortic aneurysms.


2020 ◽  
Vol 64 (4) ◽  
pp. 40407-1-40407-13 ◽  
Author(s):  
Ran Pang ◽  
He Huang ◽  
Tri Dev Acharya

Abstract Yongding River is one of the five major river systems in Beijing. It is located to the west of Beijing. It has influenced culture along its basin. The river supports both rural and urban areas. Furthermore, it influences economic development, water conservation, and the natural environment. However, during the past few decades, due to the combined effect of increasing population and economic activities, a series of changes have led to problems such as the reduction in water volume and the exposure of the riverbed. In this study, remote sensing images were used to derive land cover maps and compare spatiotemporal changes during the past 40 years. As a result, the following data were found: forest changed least; cropland area increased to a large extent; bareland area was reduced by a maximum of 63%; surface water area in the study area was lower from 1989 to 1999 because of the excessive use of water in human activities, but it increased by 92% from 2010 to 2018 as awareness about protecting the environment arose; there was a small increase in the built-up area, but this was more planned. These results reveal that water conservancy construction, agroforestry activities, and increasing urbanization have a great impact on the surrounding environment of the Yongding River (Beijing section). This study discusses in detail how the current situation can be attributed to of human activities, policies, economic development, and ecological conservation Furthermore, it suggests improvement by strengthening the governance of the riverbed and the riverside. These results and discussion can be a reference and provide decision support for the management of southwest Beijing or similar river basins in peri-urban areas.


Author(s):  
Irina Gaus ◽  
Klaus Wieczorek ◽  
Juan Carlos Mayor ◽  
Thomas Trick ◽  
Jose´-Luis Garcia` Sin˜eriz ◽  
...  

The evolution of the engineered barrier system (EBS) of geological repositories for radioactive waste has been the subject of many research programmes during the last decade. The emphasis of the research activities was on the elaboration of a detailed understanding of the complex thermo-hydro-mechanical-chemical processes, which are expected to evolve in the early post closure period in the near field. It is important to understand the coupled THM-C processes and their evolution occurring in the EBS during the early post-closure phase so it can be confirmed that the safety functions will be fulfilled. Especially, it needs to be ensured that interactions during the resaturation phase (heat pulse, gas generation, non-uniform water uptake from the host rock) do not affect the performance of the EBS in terms of its safety-relevant parameters (e.g. swelling pressure, hydraulic conductivity, diffusivity). The 7th Framework PEBS project (Long Term Performance of Engineered Barrier Systems) aims at providing in depth process understanding for constraining the conceptual and parametric uncertainties in the context of long-term safety assessment. As part of the PEBS project a series of laboratory and URL experiments are envisaged to describe the EBS behaviour after repository closure when resaturation is taking place. In this paper the very early post-closure period is targeted when the EBS is subjected to high temperatures and unsaturated conditions with a low but increasing moisture content. So far the detailed thermo-hydraulic behaviour of a bentonite EBS in a clay host rock has not been evaluated at a large scale in response to temperatures of up to 140°C at the canister surface, produced by HLW (and spent fuel), as anticipated in some of the designs considered. Furthermore, earlier THM experiments have shown that upscaling of thermal conductivity and its dependency on water content and/or humidity from the laboratory scale to a field scale needs further attention. This early post-closure thermal behaviour will be elucidated by the HE-E experiment, a 1:2 scale heating experiment setup at the Mont Terri rock laboratory, that started in June 2011. It will characterise in detail the thermal conductivity at a large scale in both pure bentonite as well as a bentonite-sand mixture, and in the Opalinus Clay host rock. The HE-E experiment is especially designed as a model validation experiment at the large scale and a modelling programme was launched in parallel to the different experimental steps. Scoping calculations were run to help the experimental design and prediction exercises taking the final design into account are foreseen. Calibration and prediction/validation will follow making use of the obtained THM dataset. This benchmarking of THM process models and codes should enhance confidence in the predictive capability of the recently developed numerical tools. It is the ultimate aim to be able to extrapolate the key parameters that might influence the fulfilment of the safety functions defined for the long term steady state.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 368
Author(s):  
Lisdelys González-Rodríguez ◽  
Amauri Pereira de Oliveira ◽  
Lien Rodríguez-López ◽  
Jorge Rosas ◽  
David Contreras ◽  
...  

Ultraviolet radiation is a highly energetic component of the solar spectrum that needs to be monitored because is harmful to life on Earth, especially in areas where the ozone layer has been depleted, like Chile. This work is the first to address the long-term (five-year) behaviour of ultraviolet erythemal radiation (UVER) in Santiago, Chile (33.5° S, 70.7° W, 500 m) using in situ measurements and empirical modelling. Observations indicate that to alert the people on the risks of UVER overexposure, it is necessary to use, in addition to the currently available UV index (UVI), three more erythema indices: standard erythemal doses (SEDs), minimum erythemal doses (MEDs), and sun exposure time (tery). The combination of UVI, SEDs, MEDs, and tery shows that in Santiago, individuals with skin types III and IV are exposed to harmfully high UVER doses for 46% of the time that UVI indicates is safe. Empirical models predicted hourly and daily values UVER in Santiago with great accuracy and can be applied to other Chilean urban areas with similar climate. This research inspires future advances in reconstructing large datasets to analyse the UVER in Central Chile, its trends, and its changes.


Author(s):  
Elżbieta Szczygieł ◽  
Agata Gigoń ◽  
Izabela Cebula Chudyba ◽  
Golec Joanna ◽  
Golec Edward

BACKGROUND: Adolescent idiopathic scoliosis (AIS) is a common structural spine deformity affecting 2%–4% of adolescents. Due to the unknown cause of idiopathic scoliosis, its therapy is a long-term and often unsatisfactory process. In the literature, it is often suggested that problems related to the feeling of one’s own body are caused by AIS. OBJECTIVE: The aim of this study was to assess the feeling of one’s own body among children with and without scoliosis on the example of feeling the head position, pelvis shape and balance. METHOD: The research included 62 children: 30 with scoliosis and 25 without diagnosed scoliosis with an age range between 11 to 19 years. The minimum scoliosis value was 7∘ and the maximum was 53∘. The average value was 25∘. During the study, three functional tests were used: Cervical Joint Position Error Test (CJPET), Clinical Test of Sensory Integration on Balance (CTSIB) and Body proportion demonstration test (BPDT). RESULTS: The results of the tests showed statistically significant differences (CJPET p= 3.54* 10-14, CTSIB p= 0.0376, BPDT p= 0.0127). However, none of the studies showed a correlation between the results of people with scoliosis and the value of their Cobb angles.


2013 ◽  
Vol 8 (1) ◽  
pp. 084596 ◽  
Author(s):  
Zhongchang Sun ◽  
Xinwu Li ◽  
Wenxue Fu ◽  
Yingkui Li ◽  
Dongsheng Tang

Sign in / Sign up

Export Citation Format

Share Document