Treatment of textile dyes in two-phase and single-phase anaerobic bio-treatment systems

2008 ◽  
Vol 57 (6) ◽  
pp. 863-868 ◽  
Author(s):  
D. Bhattacharyya ◽  
K. S. Singh

This research integrates two different concepts of anaerobic biotechnology- two-phase anaerobic treatment and anaerobic granular sludge bed technology, in treatment of colored wastewaters from textile industries. Four anaerobic reactors based on upflow anaerobic sludge blanket (UASB) technology were used as acid reactors and an expanded granular sludge bed (EGSB) reactor was used as a methane reactor. A conventional single-phase anaerobic reactor, working on EGSB technology was run in parallel to compare the performances of the two systems. Reactors were operated at different hydraulic retention times. The results from the study, which span over a period of 400 days, indicated that the two-phase system produces a higher quality of effluent in terms of color, COD and suspended solids than single-phase anaerobic treatment when operated under similar conditions. Alkalinity requirement of two-phase system was also observed to be lower than that of single-phase system which is important regarding design consideration.

1992 ◽  
Vol 26 (3-4) ◽  
pp. 877-886 ◽  
Author(s):  
T. Ohtsuki ◽  
M. Watanabe ◽  
Y. Miyaji

Two start-up methods of thermophilic UASB reactor were investigated for fast start-ups; one utilized micro-carrier as an initial support material and the other used intact mesophilic UASB granules as an initial seed. With both methods thermophilic granules having high activity were obtained in less than 3 months, even with acidified wastewater. Maximum sludge load for VFA substrate and sugar substrate were 3.2 and 0.9 kgCOD/kgVSS/day, respectively. Pre-acidogenesis was indispensable for high-performance treatment of sugar-containing substrate. It was proven that with a two-phase system sludge load could be raised to 3.0 kgCOD/kgVSS/day for sugar containing wastewaters. Some features of obtained sludge were examined, including maximum substrate utilizing activities, temperature dependence, pH dependence, and activity deterioration under lower loading conditions.


1987 ◽  
Vol 19 (1-2) ◽  
pp. 237-247 ◽  
Author(s):  
P. L. Dold ◽  
A. Sam-Soon ◽  
I. H. Palmer ◽  
G v. R. Marais

The new generation of anaerobic digestion systems provide a high level of performance under optimal conditions (~ 37°C). However, in practice many influents will be at lower temperatures - heating of digesters presents problems, particularly in developing countries where technical backup is limited. This paper reports on a study of the treatment of a low/medium strength apple juicing waste in an upflow anaerobic sludge blanket reactor (UASB) at temperatures Less than optimal (25°C and 30°C). Maximum loading rates of approximately 12 and 16 kg COD m−3 d−1 were attained at 25°C and 30°C, respectively, for Influent concentrations in the range 2500 to 5000 rag COD ℓ−1. The comparative treatment capacity is In accord with the reported temperature sensitivity of mesophilic anaerobic processes. Formation of pelletised (granular) sludge enabled high upflow velocities and low hydraulic retention times.


1999 ◽  
Vol 40 (11-12) ◽  
pp. 67-75 ◽  
Author(s):  
Sigrun J. Jahren ◽  
Jukka A. Rintala ◽  
Hallvard Ødegaard

Thermomechanical pulping (TMP) whitewater was treated in thermophilic (55°C) anaerobic laboratory-scale reactors using three different reactor configurations. In all reactors up to 70% COD removals were achieved. The anaerobic hybrid reactor, composed of an upflow anaerobic sludge blanket (UASB) and a filter, gave degradation rates up to 10 kg COD/m3d at loading rates of 15 kg COD/m3d and hydraulic retention time (HRT) of 3.1 hours. The anaerobic multi-stage reactor, consisting of three compartments, each packed with granular sludge and carrier elements, gave degradation rates up to 9 kg COD/m3d at loading rates of 15-16 kg COD/m3d, and HRT down to 2.6 hours. Clogging and short circuiting eventually became a problem in the multi-stage reactor, probably caused by too high packing of the carriers. The anaerobic moving bed biofilm reactor performed similar to the other reactors at loading rates below 1.4 kg COD/m3d, which was the highest loading rate applied. The use of carriers in the anaerobic reactors allowed short HRT with good treatment efficiencies for TMP whitewater.


2021 ◽  
Vol 148 ◽  
pp. 106012
Author(s):  
Achiraya Jiraprasertwong ◽  
Pattaratorn Karnchanapaisal ◽  
Kessara Seneesrisakul ◽  
Pramoch Rangsunvigit ◽  
Sumaeth Chavadej

2017 ◽  
Vol 76 (9) ◽  
pp. 2268-2279 ◽  
Author(s):  
Henrique Vieira de Mendonça ◽  
Jean Pierre Henry Balbaud Ometto ◽  
Marcelo Henrique Otenio ◽  
Alberto José Delgado dos Reis ◽  
Isabel Paula Ramos Marques

Abstract New data on biogas production and treatment of cattle wastewater were registered using an upflow anaerobic sludge blanket-anaerobic filter (UASB-AF) hybrid reactor under mesophilic temperature conditions (37 °C). The reactor was operated in semi-continuous mode with hydraulic retention times of 6, 5, 3 and 2 days and organic loading rates of 3.8, 4.6, 7.0 and 10.8 kg CODt m−3 d−1. Biogas volumes of 0.6–0.8 m3 m−3 d−1 (3.8–4.6 kg CODt m−3 d−1) and 1.2–1.4 m3 m−3 d−1 (7.0–10.8 kg CODt m−3 d−1), with methane concentrations between 69 and 75%, were attained. The removal of organic matter with values of 60–81% (CODt) and 51–75% (CODs) allowed methane yields of 0.155–0.183 m3 CH4 kg−1 CODt and 0.401–0.513 m3 CH4 kg−1 CODs to be obtained. Volatile solids were removed in 34 to 69%, with corresponding methane yields of 0.27 to 0.42 m3 CH4 kg−1 VSremoved. The good performance of the novel hybrid reactor was demonstrated by biogas outputs higher than reported previously in the literature, along with the quality of the gas obtained in the various experimental phases. The hybrid reactor investigated in this study presents comparative advantages, particularly in relation to conventional complete mixture units, considering economic factors such as energy consumption, reactor volume and installation area.


2004 ◽  
Vol 49 (11-12) ◽  
pp. 69-76 ◽  
Author(s):  
J.E. Schmidt ◽  
D.J. Batstone ◽  
I. Angelidaki

Upflow anaerobic sludge blanket reactors may offer a number of advantages over conventional mixed-tank, SBR, and biofilm reactors, including high space-loading, low footprint, and resistance to shocks and toxins. In this study, we assessed the use of upflow anaerobic sludge blanket (UASB) reactor technology as applied to anaerobic ammonia removal, or Anammox. Four 200 ml UASB reactors were inoculated with 50% (by volume) anaerobic granular sludge and 50% flocular sludge from different sources (all with the potential for containing Anammox organisms). Tools used to assess the reactors included basic analyses, fluorescent in-situ hybridisation, and mathematical modelling, with statistical non-linear parameter estimation. Two of the reactors showed statistically identical Anammox activity (i.e., identical kinetic parameters), with good ammonia and nitrite removal (0.14 kgNHx m-3 reactor day-1, with 99% ammonia removal). The third reactor also demonstrated significant Anammox activity, but with poor identifiability of parameters. The fourth reactor had no statistical Anammox activity. Modelling indicated that poor identifiability and performance in the third and fourth reactors were related to an excess of reduced carbon, probably originating in the inoculum. Accumulation of Anammox organisms was confirmed both by a volume loading much lower than the growth rate, and response to a probe specific for organisms previously reported to mediate Anammox processes. Overall, the UASB reactors were effective as Anammox systems, and identifiability of the systems was good, and repeatable (even compared to a previous study in a rotating biological contactor). This indicates that operation, design, and analysis of Anammox UASB reactors specifically, and Anammox systems in general, are reliable and portable, and that UASB systems are an appropriate technology for this process.


1997 ◽  
Vol 35 (10) ◽  
pp. 183-188 ◽  
Author(s):  
George R. Zoutberg ◽  
Peter de Been

In this paper a new type of anaerobic reactor is presented. The system has been developed by Biothane Systems and is marketed under the name Biobed® EGSB reactor (Expanded Granular Sludge Bed). In this reactor it is possible to grow and maintain a granular sludge under high liquid (10 m/h) and gas velocities (7 m/h). The most striking feature is the growth of biomass in a granular form, similar to the UASB granules: no carrier material is used. The process is specially suitable to treat waste water that contains compounds that are toxic in high concentrations and that only can be degraded in low concentrations (chemical industry). An example is given for a waste water originating from a chemical factory (Caldic Europoort) in the Netherlands. In this factory formaldehyde is produced from methanol. The waste water is characterised by high concentrations of these compounds (formaldehyde to 10 g/l and methanol to 20 g/l). Due to the special configuration of the anaerobic reactor it is possible to realise a removal efficiency for both compounds of more than 98%. It is also possible to operate the reactor as an ultra high loaded anaerobic reactor (to 30 kg COD/m3.day) for applications in other sectors of industry (e.g. brewery, yeast, sugar, corn ethanol production etc).


2013 ◽  
Vol 634-638 ◽  
pp. 182-186
Author(s):  
Juan Wang ◽  
Qin Zhong

With the aim to use anaerobic granular sludge, the methanogenic activity inhibition and recovery of anaerobic granular sludge from an industrial anaerobic reactor (s1) were investigated by measuring the methane volume at low pH. A lab-scale upflow anaerobic sludge blanket (UASB) reactor was inoculated with s1.s1 was used to remove Zn2+ in wastewater. The results show that activity of s1 is similar when the pH value is 6.5 to 7.0. The methane volume is obviously decreased when the pH value is 6.0. The activity is completely inhibited when the pH value is 4.5. The activity is fully recovered when the pH is above 6.5 and hardly recovers when the pH fell to 4.5. The main Zn2+ removal mechanism is chemical adsorption.


Sign in / Sign up

Export Citation Format

Share Document