Municipal wastewater treatment through an aerobic biofilm SBR integrated with a submerged filtration bed

2009 ◽  
Vol 59 (5) ◽  
pp. 917-926 ◽  
Author(s):  
Kai Yang ◽  
Jiajie He ◽  
Mark Dougherty ◽  
Xiaojun Yang ◽  
Lu Li

A biofilm reactor and a gravitational filtration bed were integrated as a sequencing batch reactor (SBR) to aerobically treat a municipal wastewater. Polyacrylonitrile balls (50 mm diameter, 90% porosity) were filled into the upper part of the SBR as biofilm attaching materials and anthracite coal (particle size ∼1.17 mm) was placed into the lower part as filter media. The SBR was aerated during filling and reaction phases, followed by a 10 min discharge phase during which the wastewater went through the filtration bed without aeration. The SBR was tested with raw wastewater from a municipal WWTP in Wuhan, China from July 2006 to January 2007, during both a warm season and a cold season. The SBR showed a capability to accept COD and turbidity fluctuations in the receiving wastewater. Seasonal influence on COD and nitrogen removal by the biofilm reactor was significant. Nitrogen and phosphorus removals were limited by COD levels in the wastewater. The filtration process removed considerable COD, nitrogen, phosphorus, and turbidity. The overall SBR effluent quality consistently satisfied the national secondary effluent discharge standard of China, except for total phosphorus. An anaerobic phase before the aerobic reaction is proposed to improve phosphorus and nitrogen removal. The filter normally required a backwash every seven days and the water needed for backwash was less than 4% of the wastewater treated by the SBR. This experiment provides information needed for further investigation to improve performance of the SBR.

1999 ◽  
Vol 40 (4-5) ◽  
pp. 169-176 ◽  
Author(s):  
Giuseppe Pastorelli ◽  
Roberto Canziani ◽  
Luca Pedrazzi ◽  
Alberto Rozzi

A pilot moving-bed sequencing batch biofilm reactor (MBSBBR) fed with primary settled wastewater, was used in order to study organic carbon, phosphorus and nitrogen removal with and without external carbon sources. Patented KMT® polyethylene biofilm carriers were used. Organic carbon uptake and phosphorus release has been achieved in the anaerobic phase of the cycle, while nitrification, simultaneous denitrification (i.e., anoxic respiration of sequestered COD in the inner layer of the biofilm) and phosphorus uptake was observed in the aerobic phase. A stable biological phosphorus removal could be achieved only with an external carbon source. Since the process proved flexible and reliable, it is suitable for full scale application to municipal wastewater treatment plants (WWTPs), in order to meet EU total nitrogen and phosphorus limit values for discharge into sensitive receiving waters.


2014 ◽  
Vol 69 (10) ◽  
pp. 1984-1995 ◽  
Author(s):  
Lana Mallouhi ◽  
Ute Austermann-Haun

Sequencing batch reactors (SBRs) are known for high process stability and usually have a good sludge volume index (SVI). Nevertheless, in many SBRs in Germany for municipal wastewater treatment, scum and foam problems can occur, and SVI can be larger than 200 mL/g. The microscopic investigations of the activated sludge from plants with nitrogen and phosphorus removal have shown that Microthrix parvicella is dominant in the activated sludge in most of them. Studies showed that the optimum growth of M. parvicella is performed at a high sludge age (>20 d) and low sludge load in the range of 0.05–0.2 kg of biochemical oxygen demand per kg of total suspended solids per day (kg BOD5/(TSS·d)). The investigations in 13 SBRs with simultaneous aerobic sludge stabilization (most of them are operated with a system called differential internal cycle strategy sequential batch reactor (DIC-SBR)) show that M. parvicella is able to grow in sludge loads less than 0.05 kg BOD5/(kg TSS·d) as well. To optimize the operation of those SBRs, long cycle times (8–12 h) and dosing of iron salts to eliminate long-chain fatty acids are both recommended. This leads to better SVI and keeps M. parvicella at a low frequency.


2002 ◽  
Vol 46 (4-5) ◽  
pp. 293-299 ◽  
Author(s):  
H. Steinmetz ◽  
J. Wiese ◽  
T.G. Schmitt

Four wastewater treatment plants running with sequencing batch reactor (SBR) technology have been evaluated in view of their effluent quality, treatment efficiency and energy demand. The plants are designed for approximately 5,000, 8,000, 15,000 and 25,000 population equivalents (p.e.). Although two of the plants were overloaded during the investigation time the effluent concentrations of nitrogen, especially ammonia, and phosphorus were low. The results show, that SBR plants which are designed according to German standards have additional capacities for degradation of organic matter and removal of nitrogen and phosphorus. Furthermore SBR plants with combined sewer systems are able to treat combined sewage very well. Thus SBR technology proves to be a good alternative for municipal sewage plants and can help to save investment costs.


2014 ◽  
Vol 1073-1076 ◽  
pp. 849-853
Author(s):  
Xiu Bin Lv ◽  
Zhi Hong Yang ◽  
Hai Zhao Zhao ◽  
Hong Ping Chen

A waste water treatment plant (WWTP) adopts sequencing batch reactor (SBR) process, which exist the problem of instable treatment effect on denitrification and dephosphorization. The total nitrogen (TN) and total phosphorus (TP) of the effluent could not reach the class A standard of discharge standard of pollutants for municipal wastewater treatment plant (GB18918-2002) (hereinafter referred to as the class A standard) as a result of different order in utilizing the carbon source between nitrification and denitrification. The step-feed procedure is used to improve the efficiency of denitrification and dephosphorization. Field experiments about the effects of the different influent distribution ratio (marked as λ) on denitrification and dephosphorization were carried out and the results showed that the effect of the effluent TN is the best and other indexes could also achieve class A standard when λ is 5:3.


2013 ◽  
Vol 67 (12) ◽  
pp. 2761-2767 ◽  
Author(s):  
Ruihua Li ◽  
Jianmin Niu ◽  
Xinmin Zhan ◽  
Bo Liu

The efficacy of iron(II) sulfide (FeS)-based autotrophic denitrification in simultaneous nitrogen and phosphorus removal from wastewater was studied with batch experiments. It was efficient at a wide pH range of 5–9, and temperature range of 10–40 °C. The concentrations of NH4+-N, Mg2+ and HCO3− in the wastewater should be kept over 7.8, 0.24 and 30 mg L−1 for efficient nitrate (NO3−-N) reduction, respectively. The NO3−-N removal rate increased from 0 to 82 mg L−1 d−1 and then leveled off when the NO3−-N concentration increased from 0 to 415 mg L−1 and then to 700 mg L−1, respectively. The NO3−-N removal rate quickly increased, leveled off, and then sharply decreased when the PO43−-P concentration increased from 0 to 0.1 mg L−1, then to 114.0 mg L−1, and further to 683.8 mg L−1, respectively. The PO43−-P removal was over 98% when the PO43−-P concentration ranged 0–683.3 mg L−1. During treatment of the secondary effluent of a local municipal wastewater treatment plant containing NO3−-N of 14.9 mg L−1 and total phosphorus (TP) of 3.9 mg L−1, NO3−-N was reduced to 1.1 mg L−1 and TP was completely removed.


Author(s):  
Li-Qiu Zhang ◽  
Xing Jiang ◽  
Hongwei Rong ◽  
Chun-Hai Wei ◽  
Min Luo ◽  
...  

As one stage process capable of simultaneous carbon and nitrogen removal, membrane aerated biofilm reactor (MABR) has advantages of low energy consumption from bubble-free aeration and no extra carbon dosage...


2011 ◽  
Vol 6 (1) ◽  
Author(s):  
A. Iborra-Clar ◽  
J.A. Mendoza-Roca ◽  
A. Bes-Pií ◽  
J.J. Morenilla-Martínez ◽  
I. Bernácer-Bonora ◽  
...  

Rainfall diminution in the last years has entailed water scarcity in plenty of European regions, especially in Mediterranean areas. As a consequence, regional water authorities have enhanced wastewater reclamation and reuse. Thus, the implementation of tertiary treatments has become of paramount importance in the municipal wastewater treatment plants (WWTP) of Valencian Region (Spain). Conventional tertiary treatments consist of a physico-chemical treatment of the secondary effluent followed by sand filtration and UV radiation. However, the addition of coagulants and flocculants sometimes does not contribute significantly in the final water quality. In this work, results of 20-months operation of three WWTP in Valencian Region with different tertiary treatments (two without chemicals addition and another with chemicals addition) are discussed. Besides, experiments with a 2 m3/h pilot plant located in the WWTP Quart-Benager in Valencia were performed in order to evaluate with the same secondary effluent the effect of the chemicals addition on the final water quality. Results showed that the addition of chemicals did not improve the final water quality significantly. These results were observed both comparing the three full scale plants and in the pilot plant operation.


1994 ◽  
Vol 30 (4) ◽  
pp. 125-132 ◽  
Author(s):  
D. Carnimeo ◽  
E. Contini ◽  
R. Di Marino ◽  
F. Donadio ◽  
L. Liberti ◽  
...  

The pilot investigation on the use of UV as an alternative disinfectant to NaOCI was started in 1992 at Trani (South Italy) municipal wastewater treatment plant (335 m3/h). The results collected after six months continuous operation enabled us to compare UV and NaOCl disinfection effectiveness on the basis of secondary effluent characteristics, quantify photoreactivation effects, evidence possible DBP formation and assess costs.


Sign in / Sign up

Export Citation Format

Share Document