Experiment Research on Performance of Step-Feed SBR Nitrogen and Phosphorus Removal

2014 ◽  
Vol 1073-1076 ◽  
pp. 849-853
Author(s):  
Xiu Bin Lv ◽  
Zhi Hong Yang ◽  
Hai Zhao Zhao ◽  
Hong Ping Chen

A waste water treatment plant (WWTP) adopts sequencing batch reactor (SBR) process, which exist the problem of instable treatment effect on denitrification and dephosphorization. The total nitrogen (TN) and total phosphorus (TP) of the effluent could not reach the class A standard of discharge standard of pollutants for municipal wastewater treatment plant (GB18918-2002) (hereinafter referred to as the class A standard) as a result of different order in utilizing the carbon source between nitrification and denitrification. The step-feed procedure is used to improve the efficiency of denitrification and dephosphorization. Field experiments about the effects of the different influent distribution ratio (marked as λ) on denitrification and dephosphorization were carried out and the results showed that the effect of the effluent TN is the best and other indexes could also achieve class A standard when λ is 5:3.

1996 ◽  
Vol 33 (12) ◽  
pp. 251-254
Author(s):  
Karl Arno Bäumer ◽  
Angela Baumann

The Institute for Water and Waste Management (ISA) at the Aachen University of Technology (RWTH) verified, through semi-technical analysis, the efficiency of the planned upgrade of the Kleve-Salmorth waste water treatment plant. Additionally the allowable biological phosphorus removal limit and the scheduled simultaneous precipitation were also ascertained.


2011 ◽  
Vol 6 (4) ◽  
Author(s):  
Christophe Amiel ◽  
Delphine Nawawi-Lansade ◽  
Kim Sorensen

Many recent studies have shown processes or models to minimize the energy consumption on a municipal wastewater treatment plant (WWTP) in operation. Today the main drivers are the energy and CO2 reduction. On existing plants, the potential success of achieving the Energy neutral WWTP depends on the effluent guarantees demanded and the eventual additional carbon sources on the digesters. Veolia has now developed a tool to estimate the energy consumption and the CO2 impact to select the appropriate treatment lines (water and sludge) up front at the project stage. The real challenge is to cover the needs of the plant without external carbon sources added to the digester. At the project stage, before the bid of the WWTP, due to time constraints only few comparisons can be performed to predict the energy consumption and CO2 impact and provide the best solution to reach to the energy neutral plant as electricity wise. One conclusion of the study is that, the raw water characteristics and the effluent guarantee has a great impact on the possibilities to reach the target. Furthermore, working on reducing the power consumption and on increasing the biogas production for example by a continuous Thermal hydrolysis is a good way to go towards self sufficiency.


2004 ◽  
Vol 50 (10) ◽  
pp. 51-58 ◽  
Author(s):  
M.J. Vallés-Morales ◽  
J.A. Mendoza-Roca ◽  
A. Bes-Pií ◽  
A. Iborra-Clar

The sludge water obtained from the dewatering processes following anaerobic sludge digestion contains high levels of ammonia. This sludge water is generally returned to the beginning of the waste water treatment plant process, thereby significantly increasing the nitrogen load on the biological process. In this project, the start-up of a full-scale sequencing batch reactor (SBR) process to separately treat the aforementioned sludge water is studied. Two parallel SBRs were operated over 8 hour cycles. The duration of the start-up was approximately 100 days until a hydraulic load of 225 m3/d was reached for each SBR. This paper presents the results of the start-up, highlighting the change in nitrogen concentration with time and the effect of other parameters such as temperature and suspended solids in that period. Following the project period of operation, the ammonium concentration was reduced by more than 95% on average.


2018 ◽  
Vol 1 (19) ◽  
Author(s):  
Nebojša Knežević ◽  
Dušica Pešević ◽  
Igor Milunović

The purpose of the wastewater treatment plant project is to implement and achieve the goals set in thewater management bases of the Republika Srpska and the Federation of BiH, which identified thenecessary sectoral investments and the development of the institutional capacity needed to meet therequirements of the European directives. By implementing the projects of the wastewater treatmentplant, settlements of up to 15,000 equivalent inhabitants (EBS) will meet European standards in urbanwastewater treatment in order to protect the environment from harmful consequences of the dischargeof municipal wastewater. The paper proposes a central sewage treatment plant that includes severaltreatments: mechanical, biological, chemical and sludge treatment. The paper presents the norms andstandards used for the design of the purification process, as well as the basic input parameters duringthe calculation, which are used to dimension the necessary equipment.


2016 ◽  
Vol 9 (2) ◽  
Author(s):  
Dinda Rita K. Hartaja ◽  
Imam Setiadi

Generally, wastewater of nata de coco industry contains suspended solids and COD were high, ranging from 90,000 mg / l. The high level of of the wastewater pollutants, resulting in nata de coco industry can not be directly disposed of its wastewater into the environment agency. Appropriate technology required in order to process the waste water so that the treated water can meet the environmental quality standards that are allowed. Designing the waste water treatment plant that is suitable and efficient for treating industrial wastewater nata de coco is the activated sludge process. Wastewater treatment using activated sludge process of conventional (standard) generally consists of initial sedimentation, aeration and final sedimentation.Keywords : Activated Sludge, Design, IPAL


1991 ◽  
Vol 23 (4-6) ◽  
pp. 825-834 ◽  
Author(s):  
T. H. Lessel

The upgrading and nitrification was required for the waste water treatment plant in Geiselbullach. As space for more aeration tanks was not available, the possibility of increasing the MLSS by the use of submerged bio-film reactors was tested in a half technical scale pilot plant with three different reactor materials. Each tested reactor material caused a significant increase of MLSS and the nitrification reaction. The rope-type material was selected for the practical application, as it had not the same disadvantages of the other tested systems, which proved operational problems. After one year of continuous operation for nitrification in the full scale plant the influences on the biomass characteristics were investigated. Design criterias and details and operational data are reported.


1991 ◽  
Vol 24 (10) ◽  
pp. 161-170 ◽  
Author(s):  
M. D. Sinke

Until a century ago, The Hague's waste water was discharged directly into the city's canals. However, the obnoxious smell and resultant pollution of local waters and beaches then necessitated the implementation of a policy of collecting and transferring waste water by means of a system of sewers. By 1937, it was being discharged, via a 400 metre-long sea outfall, directly into the North Sea. By 1967, however, the increasing volume of waste water being generated by The Hague and the surrounding conurbations called for the construction of a primary sedimentation plant. This had two sea outfalls, one 2.5 km long and the other 10 km long, the former for discharging pre-settled waste water and the latter for discharging sludge directly into the North Sea. This “separation plant” was enlarged during the period 1986-1990. On account of the little available area - only 4.1 ha - the plant had to be enlarged in two stages by constructing a biological treatment section and a sludge treatment section with a capacity of 1,700,000 p.e. (at 136 gr O2/p.e./day). In order to gain additional space, a number of special measures were introduced, including aerating gas containing 90% oxygen and stacked final clarifiers. Following completion of the sludge treatment section, it has become possible, since 1st May 1990, to dump digested sludge into a large reservoir (“The Slufter”), specially constructed to accommodate polluted mud dredged from the Rotterdam harbours and waterways. As a result of these measures, there has been a reduction of between 70% and 95% in North Sea pollution arising from the “Houtrust” waste water treatment plant. Related investment totalled Dfl. 200 million and annual operating and maintenance costs (including investment charges) will amount to Dfl. 30 million. Further measures will have to be taken in the future to reduce the discharge of phosphorus and nitrogen. So this enlargement is not the end. There will be continued extension of the purification operations of the “Houtrust” waste water treatment plant.


1992 ◽  
Vol 25 (4-5) ◽  
pp. 225-232
Author(s):  
C. F. Seyfried ◽  
P. Hartwig

This is a report on the design and operating results of two waste water treatment plants which make use of biological nitrogen and phosphate elimination. Both plants are characterized by load situations that are unfavourable for biological P elimination. The influent of the HILDESHEIM WASTE WATER TREATMENT PLANT contains nitrates and little BOD5. Use of the ISAH process ensures the optimum exploitation of the easily degradable substrate for the redissolution of phosphates. Over 70 % phosphate elimination and effluent concentrations of 1.3 mg PO4-P/I have been achieved. Due to severe seasonal fluctuations in loading the activated sludge plant of the HUSUM WASTE WATER TREATMENT PLANT has to be operated in the stabilization range (F/M ≤ 0.05 kg/(kg·d)) in order not to infringe the required effluent values of 3.9 mg NH4-N/l (2-h-average). The production of surplus sludge is at times too small to allow biological phosphate elimination to be effected in the main stream process. The CISAH (Combined ISAH) process is a combination of the fullstream with the side stream process. It is used in order to achieve the optimum exploitation of biological phosphate elimination by the precipitation of a stripped side stream with a high phosphate content when necessary.


Sign in / Sign up

Export Citation Format

Share Document