Quantifying human exposure to contaminants for multiple-barrier water reuse systems

2010 ◽  
Vol 61 (1) ◽  
pp. 77-83 ◽  
Author(s):  
S. J. Khan ◽  
J. A. McDonald

Reliance upon advanced water treatment processes to provide safe drinking water from relatively compromised sources is rapidly increasing in Australia and other parts of the world. Advanced treatment processes such as reverse osmosis have the ability to provide very effective treatment for a wide range of chemicals when operated under optimal conditions. However, techniques are required to comprehensively validate the performance of these treatment processes in the field. This paper provides a discussion and demonstration of some effective statistical techniques for the assessment and description of advanced water treatment plant performance. New data is provided, focusing on disinfection byproducts including trihalomethanes and N-nitrosamines from a recent comprehensive quantitative exposure assessment for an advanced water recycling scheme in Australia.

1992 ◽  
Vol 26 (5-6) ◽  
pp. 1255-1264
Author(s):  
K. L. Martins

During treatment of groundwater, radon is often coincidentally removed by processes typically used to remove volatile organic compounds (VOCs)-for example, processes such as liquid-phase granular activated carbon (LGAC) adsorption and air stripping with vapor-phase carbon (VGAC). The removal of radon from drinking water is a positive benefit for the water user; however, the accumulation of radon on activated carbon may cause radiologic hazards for the water treatment plant operators and the spent carbon may be considered a low-level radioactive waste. To date, most literature on radon removal by water treatment processes was based on bench- or residential-scale systems. This paper addresses the impact of radon on municipal and industrial-scale applications. Available data have been used todevelop graphical methods of estimating the radioactivity exposure rates to facility operators and determine the fate of spent carbon. This paper will allow the reader to determine the potential for impact of radon on the system design and operation as follows.Estimate the percent removal of radon from water by LGAC adsorbers and packed tower air strippers. Also, a method to estimate the percent removal of radon by VGAC used for air stripper off-gas will be provided.Estimate if your local radon levels are such that the safety guidelines, suggested by USEPA (United States Environmental Protection Agency), of 25 mR/yr (0.1 mR/day) for radioactivity exposure may or may not be exceeded.Estimate the disposal requirements of the waste carbon for LGAC systems and VGAC for air stripper “Off-Gas” systems. Options for dealing with high radon levels are presented.


2001 ◽  
Vol 2001 (5) ◽  
pp. 394-402 ◽  
Author(s):  
Astrid Huertas ◽  
Benoit Barbeau ◽  
Christian Desjardins ◽  
Gary A. Toranzos

2009 ◽  
Vol 11 (1) ◽  
pp. 8-11
Author(s):  
Peter Fečko ◽  
Iva Janakova ◽  
Helena Raclavská ◽  
Barbara Tora

Application of flotation in the decontamination of sediments from the Cerny prikop stream The stream Cerny prikop is located in the Ostrava city districts of Marianske Hory, Moravska Ostrava and Privoz. This locality belongs to the most polluted areas in Ostrava as it is unbearably polluted by the Coking Plant of Jan Sverma, company BorsodChem MCHZ (the chemical plant), City Waste Water Treatment Plant and a number of other companies in the given territory, all the way to its mouth to the Odra River. Moreover, the area is also affected by the construction of the D 47 motorway. The sediments of Cerny prikop represent a significant ecological burden within the Ostrava urban area. They are contaminated by a wide range of organic pollutants which have never been exactly identified.


Opflow ◽  
2019 ◽  
Vol 45 (11) ◽  
pp. 24-27
Author(s):  
Nathan J. Boyle ◽  
Paul G. Biscardi ◽  
Dawn M. Guendert ◽  
Carl W. Spangenberg

2009 ◽  
Vol 60 (3) ◽  
pp. 709-715 ◽  
Author(s):  
Kim van Schagen ◽  
Luuk Rietveld ◽  
Alex Veersma ◽  
Robert Babuška

Owing to the nature of the treatment processes, monitoring the processes based on individual online measurements is difficult or even impossible. However, the measurements (online and laboratory) can be combined with a priori process knowledge, using mathematical models, to objectively monitor the treatment processes and measurement devices. The pH measurement is a commonly used measurement at different stages in the drinking water treatment plant, although it is a unreliable instrument, requiring significant maintenance. It is shown that, using a grey-box model, it is possible to assess the measurement devices effectively, even if detailed information of the specific processes is unknown.


Sign in / Sign up

Export Citation Format

Share Document