Oxidation of nonylphenol ethoxylates in aqueous solution by UV-C photolysis, H2O2/UV-C, Fenton and photo-Fenton processes: are these processes toxicologically safe?

2013 ◽  
Vol 68 (8) ◽  
pp. 1801-1809 ◽  
Author(s):  
Akin Karci ◽  
Idil Arslan-Alaton ◽  
Miray Bekbolet

UV-C, H2O2/UV-C, Fenton and photo-Fenton treatment of a nonylphenol polyethoxylate (NP-10) were comparatively studied, primarily focusing on the acute toxicity of degradation products. Formic, acetic and oxalic acids were all identified as the degradation products of NP-10; however, the sole common carboxylic acid was found to be formic acid for the studied treatment processes. The percent relative inhibition towards Vibrio fischeri increased from 9% to 33% and 24% after 120 min-UV-C and H2O2/UV-C treatment, respectively. Complete NP-10 and 70% of its total organic carbon (TOC) content was removed by the photo-Fenton process, which ensured the fastest removal rates and lowest inhibitory effect (8% after 120 min treatment). The acute toxicity pattern being observed during H2O2/UV-C and photo-Fenton treatment positively correlated with temporal evolution of the identified carboxylic acids, whereas unidentified oxidation products were the most likely origin of the acute toxicity in UV-C photolysis.

2020 ◽  
Vol 1 (1) ◽  
pp. 67-76
Author(s):  
Tugba Olmez-Hanci ◽  
Idil Arslan-Alaton

Aims: The study aimed at assessing the effectiveness of the PS/UV-C, PS/ZVA and PS/ZVA/UV-C processes in terms of ciprofloxacin, a fluoroquinolone type commercially important antibiotic, and toxicity abatements in raw surface water (RSW) and distilled water (DW). Background: The occurrence of ciprofloxacin (CIP), the most widely prescribed second-generation fluoroquinolone antibiotic, even at trace level (ng/L) gives rise to antibiotic resistant bacteria and resistance genes, which can further impair the selection of genetic variants of microorganisms and impose adverse effect on human health. Objective: The degradation and detoxification of ciprofloxacin with UV-C (PS/UV-C) and ZVA (PS/ZVA) activated PS oxidation systems were investigated in distilled water (DW) and raw (untreated) surface water (RSW) samples. Moreover, CIP degradation with the PS/ZVA/UV-C heterogeneous photochemical treatment combination was also studied. Methods: The process performances of the investigated treatment systems were evaluated in terms of CIP abatement and PS consumption rates as well as dissolved organic carbon (DOC) removal efficiencies. The influence of common inorganic ions and natural organic matter (NOM) on CIP degradation was evaluated. Radical quenching experiments were conducted using probe compounds in order to elucidate the dominant reaction mechanism. In addition, acute toxicity of the original CIP and its degradation products were questioned by employing Vibrio fischeri (V. fischeri), the marine photobacterium, under optimized treatment conditions. Results: CIP was completely degraded in distilled water (DW) and raw (untreated) surface water (RSW) samples after 15 min of treatment with the PS/UV-C process (PS=0.25mM; pH=3; UVC= 2.7W/m2). PS/UV-C experiments conducted with RSW at its natural pH (=8.5) resulted in 98% CIP and practically no DOC removal whereas 56% DOC was removed at pH 3 after 120 min. Radical quenching studies revealed that sulfate radicals prevailed over hydroxyl radicals. CIP degradation was significantly inhibited by the presence of humic acid due to the effect of UV absorption and free radical quenching. Acute toxicity tests with V. fischeri exhibited fluctuating trends throughout the investigated processes and did not change appreciably after 120 min of oxidation. Conclusion: The results of this study demonstrated that PS/UV-C is superior to the PS/ZVA and PS/ZVA/UV-C treatment systems for both DW and RSW samples in terms of CIP removal rates. No additional positive effect was evident for simultaneous catalytic and photochemical PS activation (PS/ZVA/UV-C treatment system). It could be also demonstrated that the selected oxidation processes conducted in pure water might give an idea about the advanced treatment systems but realistic conditions with actual water/wastewater matrices still need to be further investigated to verify their feasibility and ecotoxicological safety.


2014 ◽  
Vol 70 (6) ◽  
pp. 1056-1064 ◽  
Author(s):  
Tugba Olmez-Hanci ◽  
Idil Arslan-Alaton ◽  
Ozlem Gelegen

Photo-Fenton-like treatment of the commercially important naphthalene sulphonate K-acid (2-naphthylamine-3,6,8-trisulphonic acid) was investigated using UV-C, UV-A and visible light irradiation. Changes in toxicity patterns were followed by the Vibrio fischeri bioassay. Rapid and complete degradation of K-acid accompanied with nearly complete oxidation and mineralization rates (>90%) were achieved for all studied irradiation types. On the other hand, detoxification was rather limited and did not change significantly during photo-Fenton-like treatment. Several oxidation products could be identified via liquid chromatograph–mass spectrometer analyses, such as desulphonated and hydroxylated naphthalene derivatives, quinones, and ring-opening as well as dimerization products. Photo-Fenton-like treatment of K-acid with UV-C, UV-A and visible light irradiation occurred through a series of hydroxylation and desulphonation reactions, followed by ring cleavage. A common degradation pathway for photo-Fenton-like treatment of K-acid using different irradiation types was proposed.


2015 ◽  
Vol 14 (3) ◽  
pp. 569-575 ◽  
Author(s):  
T. Olmez-Hanci ◽  
I. Arslan-Alaton ◽  
D. Dursun ◽  
B. Genc ◽  
D. G. Mita ◽  
...  

This paper discusses the degradation and mineralization of the nonionic surfactant and octylphenol polyethoxylate (OPEO) Triton™ X-45viathe peroxymonosulfate (PMS)/UV-C treatment process. The inhibitory effect of aqueous OPEO solution and its oxidation products was investigated by employing a battery of toxicity tests.


1974 ◽  
Vol 32 (02/03) ◽  
pp. 417-431 ◽  
Author(s):  
A. du P Heyns ◽  
D. J van den Berg ◽  
G. M Potgieter ◽  
F. P Retief

SummaryThe platelet aggregating activity of extracts of different layers of the arterial wall was compared to that of Achilles tendon. Arterial media and tendon extracts, adjusted to equivalent protein content as an index of concentration, aggregated platelets to the same extent but an arterial intima extract did not aggregate platelets. Platelet aggregation induced by collagen could be inhibited by mixing with intima extract, but only to a maximum of about 80%. Pre-mixing adenosine diphosphate (ADP) with intima extracts diminished the platelet aggregation activity of the ADP. Depending on the relationship between ADP and intima extract concentrations aggregating activity could either be completely inhibited or inhibition abolished. Incubation of ADP with intima extract and subsequent separation of degradation products by paper chromatography, demonstrated a time-dependent breakdown of ADP with AMP, adenosine, inosine and hypoxanthine as metabolic products; ADP removal was complete. Collagen, thrombin and adrenaline aggregate platelets mainly by endogenous ADP of the release reaction. Results of experiments comparing inhibition of aggregation caused by premixing aggregating agent with intima extract, before exposure to platelets, and the sequential addition of first the intima extract and then aggregating agent to platelets, suggest that the inhibitory effect of intima extract results from ADP breakdown. It is suggested that this ADP degradation by intima extract may play a protective role in vivo by limiting the size of platelet aggregates forming at the site of minimal “wear and tear” vascular trauma.


1993 ◽  
Vol 70 (05) ◽  
pp. 834-837 ◽  
Author(s):  
Akira Suehiro ◽  
Yoshio Oura ◽  
Motoo Ueda ◽  
Eizo Kakishita

SummaryWe investigated the effect of staphylokinase (SAK), which has specific thrombolytic properties, on human platelet aggregation. Platelet aggregation induced with collagen was observed following preincubation of platelets in platelet-rich plasma (PRP) or washed platelet suspension (WP) with SAK at 37° C for 30 min. SAK inhibited platelet aggregation in PRP only at the highest examined concentration (1 x 10-4 g/ml). Although SAK did not inhibit platelet aggregation in WP which contained fibrinogen, it did when the platelets had been preincubated with SAK and plasminogen. The most effective concentration in WP was 1 x 10-6 g/ml. The effect could be inhibited by adding aprotinin or α2-antiplasmin. The highest generation of plasmin in the same preincubation fluid was detected at 1 x 10-6 g/ml SAK. We concluded that SAK can inhibit platelet aggregation in WP by generating plasmin and/or fibrinogen degradation products, but is only partially effective in PRP because of the existence of α2-antiplasmin.


2004 ◽  
Vol 50 (5) ◽  
pp. 227-234 ◽  
Author(s):  
M. Petrovic ◽  
P. Gehringer ◽  
H. Eschweiler ◽  
D. Barceló

A commercial blend of nonylphenol ethoxylates (NPEOs) was chosen as representative for non-ionic polyethoxylated surfactants to study the oxidative degradation of this class of surfactants in water using ozonation as well as electron beam irradiation with and without the addition of ozone as treatment processes. The electron beam irradiation processes applied represent so-called Advanced Oxidation Processes (AOPs); the combined ozone/electron beam irradiation is, moreover, the most powerful AOP which can be applied in aqueous systems. It was found that both ozonation and the two AOPs applied were able to decompose not only the NPEOs but also the polyethyleneglycoles (PEGs) formed as by-products from NPEO degradation to residual concentrations below the limit of detection. Moreover, the treatment processes were also used to study the oxidative degradation of nonylphenoxy acetic acid (NPEC) and of nonylphenol (NP) which are formed as by-products from biodegradation of NPEOs.


2014 ◽  
Vol 6 (18) ◽  
pp. 7367-7373 ◽  
Author(s):  
Andressa Adame ◽  
Fábio R. P. Rocha

Fast determination of acute toxicity using the V. fischeri bacteria, including in-line sample dilutions and conditioning.


2015 ◽  
Vol 212 ◽  
pp. 352-359 ◽  
Author(s):  
Ouahid Ben Ghanem ◽  
Nicolas Papaiconomou ◽  
M.I. Abdul Mutalib ◽  
Sylvie Viboud ◽  
Mohanad El-Harbawi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document