Water treatment plant sludge disposal into stabilization ponds

2013 ◽  
Vol 67 (5) ◽  
pp. 1017-1025 ◽  
Author(s):  
Sidney Seckler Ferreira Filho ◽  
Roque Passos Piveli ◽  
Silvana Audrá Cutolo ◽  
Alexandre Alves de Oliveira

Researchers have paid particular attention to the disposal of sludge produced in water treatment plants (WTPs) into wastewater treatment plants (WWTPs) for further processing, mainly because it is considered an attractive alternative for the treatment of waste generated in water production processes. This study evaluated the effects of flow equalization and disposal of sludge, from a conventional WTP, into a WWTP system that includes an anaerobic stabilization pond followed by a facultative pond. During the period of sludge discharge from the WTP into the wastewater system, the influent to the WWTP presented an increase of 17% (from 171 to 200 mg L−1) of total suspended solids (TSS) and a 7.0% flow rate increase, without showing adverse effects on the organic load, TSS and nutrients removal. The most significant impact observed in the WWTP was the increase of solids accumulation rate in the anaerobic pond, with a value of 141 mm/year during the sludge discharge period. The operating time, before the dredging and desludging cycles required for this specific anaerobic pond, decreased from 12.7 to 10.4 years, which is consistent with previous studies in literature. Thus, based on the observed parameters of this study, it is viable to release solids from a WTP effluent into a WWTP that includes anaerobic stabilization ponds followed by a facultative pond. Indeed, this process scheme becomes a viable technical, environmental, and economical alternative for small to medium WWTPs.

Author(s):  
Mohd Abul Hasan

Abstract The treatment of wastewater is an essential factor in preventing pollutants and promoting the quality of the water. The inherent complexity, influential impact and the solid waste infrastructure lead to confusion and variance in the primary clarifier for wastewater. These inconsistencies lead to variations in the purity and capacity constraints of wastewater and the existential impact of water receipt. The water treatment is a complicated task that has means of chemical, technical & biochemical influences. A credible ANN method is necessary for another waste water treatment plant to prevent the breakdown of the processes. Virtual reality seems to have become a strong solution for preventing waste management uncertainties and problems. This is not only due to high deformations but also to significant external disturbances that water systems are controlling challenges. Climate is among the most significant of such disturbances. Various environmental conditions actually include different influx frequencies and levels of substances. Water contamination has become one of the extremely serious growing conservation; sewage treatment plant identification is a key major issue here and the agencies enforce tighter requirements for the operating of wastewater software systems. This article plans to create models of achievement and prospects for the possible future guidance of recent research borders for the use of artificial intelligence in wastewater treatment plants which concurrently deal with pollutants. This study has shown us that the composite ANN provides a greater level of competence in plant prediction and systemization. Highlight Systematize of Wastewater Utilization Plants, Artificial Neural Networks, artificial intelligence, Prediction Analysis, Reliability.


2016 ◽  
Vol 74 (2) ◽  
pp. 491-499 ◽  
Author(s):  
W. Liu ◽  
H. Ratnaweera

Coagulant dosing control in drinking and wastewater treatment plants (WWTPs) is often limited to flow proportional concepts. The advanced multi-parameter-based dosing control systems have significantly reduced coagulant consumption and improved outlet qualities. Due to the long retention time in separation stages, these models are mostly based on feed-forward (FF) models. This paper demonstrates the improvement of such models with feed-back (FB) concepts with simplifications, making it possible to use even in systems with long separation stages. Full-scale case studies from a drinking water treatment plant and a WWTP are presented. The model qualities were improved by the dosage adjustment of the FB model, ranging from 66% to 197% of the FF model. Hence, the outlet qualities became more stable and coagulant consumption was further reduced in the range of 3.7%–15.5%.


2020 ◽  
Vol 71 (10) ◽  
pp. 100-107
Author(s):  
Carmelia Mariana Dragomir Balanica ◽  
Cristian Muntenita ◽  
Daniela Ecaterina Zeca ◽  
Maricica Stoica

The analysis of several criteria for influent and effluent of urban sewer water treatment plant in south and south east of Romania, has a crucial role in establishing the correlations between these factors, and furthermore to assess the efficiency of the treatment system. Increasing urbanization degree and its complexity has made studies of the pollution impact appraisal to be a necessity. The mean values of the parameters measured from the wastewater plant influent like temperature, pH, suspended solids, chemical oxygen demand and biological oxygen demand vary from 17.13 � 0.23�C, 7.68 � 0.04, 234.72 � 1.55 mg/L, 396.42 � 0.76 mg/L, and 190.29 � 15.23 mg/L, respectively. The values of the above-mentioned quality indicators after the water treatment are 17.11 � 0.14�C, 7.56 � 0.03, 22.6 � 1.02 mg/L, 62.95 � 0.16 mg/L and 20.49 � 9.06 mg/L. Correlation study intended to define the feasible dependence among the evaluated parameters indicated that there were positive and negative correlations between the influent and effluent. The study conclusions point out the certitude that exist major optimizations in wastewater property after treatment processing.


2019 ◽  
Vol 10 (1) ◽  
pp. 16
Author(s):  
V. MANE-DESHMUKH PRASHANT ◽  
B. MORE ASHWINI ◽  
B. P. LADGAOKAR ◽  
S. K. TILEKAR ◽  
◽  
...  

2017 ◽  
Vol 16 (10) ◽  
pp. 2303-2315 ◽  
Author(s):  
Djamel Ghernaout ◽  
Abdelmalek Badis ◽  
Ghania Braikia ◽  
Nadjet Mataam ◽  
Moussa Fekhar ◽  
...  

2008 ◽  
Author(s):  
Angelina Johnston ◽  
Kevin O'Connor ◽  
Todd Criswell

2001 ◽  
Vol 1 (3) ◽  
pp. 91-96 ◽  
Author(s):  
L.J. Hem ◽  
E.A. Vik ◽  
A. Bjørnson-Langen

In 1995 the new Skullerud water treatment plant was put into operation. The new water treatment includes colour removal and corrosion control with an increase of pH, alkalinity and calcium concentration in addition to the old treatment, which included straining and chlorination only. Comparative measurements of internal corrosion were conducted before and after the installation of the new treatment plant. The effect of the new water treatment on the internal corrosion was approximately a 20% reduction in iron corrosion and a 70% reduction in copper corrosion. The heavy metals content in standing water was reduced by approximately 90%. A separate internal corrosion monitoring programme was conducted, studying the effects of other water qualities on the internal corrosion rate. Corrosion coupons were exposed to the different water qualities for nine months. The results showed that the best protection of iron was achieved with water supersaturated with calcium carbonate. Neither a high content of free carbon dioxide or the use of the corrosion inhibitor sodium silicate significantly reduced the iron corrosion rate compared to the present treated water quality. The copper corrosion rate was mainly related to the pH in the water.


2002 ◽  
Vol 2 (1) ◽  
pp. 233-240 ◽  
Author(s):  
J. Cromphout ◽  
W. Rougge

In Harelbeke a Water Treatment Plant with a capacity of 15,000 m3/day, using Schelde river water has been in operation since April 1995. The treatment process comprises nitrification, dephosphatation by direct filtration, storage into a reservoir, direct filtration, granular activated carbon filtration and disinfection. The design of the three-layer direct filters was based on pilot experiments. The performance of the plant during the five years of operation is discussed. It was found that the removal of atrazin by activated carbon depends on the water temperature.


Sign in / Sign up

Export Citation Format

Share Document