Antimicrobial resistance, plasmids and class 1 and 2 integrons occurring in Pseudomonas aeruginosa isolated from Brazilian aquatic environments

2013 ◽  
Vol 67 (5) ◽  
pp. 1144-1149 ◽  
Author(s):  
Maria Olívia Zanetti ◽  
Vinicius Vicente Martins ◽  
André Pitondo-Silva ◽  
Eliana Guedes Stehling

Pseudomonas aeruginosa is an important nosocomial pathogen also found in water, soil, plants and in human and animal fecal samples. In this study, 31 isolates from water samples were analyzed by enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR) and PCR to detect integrons and investigated for antibiotic resistance and plasmidial profile. The results demonstrated the presence of plasmids in four isolates. Three of these, isolates from water in a city park (Curupira Park, Ribeirão Preto, Brazil) and a lake at the University of São Paulo (Campus of Ribeirão Preto), had plasmids with the same molecular weight (21MDa) and similar resistance profiles, although they were shown to be genetically different by ERIC-PCR. Class 1 and class 2 integrons were detected in one of these isolates. The results suggest that environmental P. aeruginosa strains may be a potential reservoir of plasmids and antibiotic resistance genes.

2020 ◽  
Vol 24 (4) ◽  
pp. 633-637
Author(s):  
B.O. Isichei-Ukah ◽  
O.I. Enabulele

The presence of integrons and antibiotic resistance genes in the genome of Pseudomonas aeruginosa pose a serious problem in the treatment and control of infections caused by this pathogen in hospitals. This study was carried to analyse the presence of class 1 integrons and some antibiotic resistance genes on selected clinical and environmental strains of Pseudomonas aeruginosa. A total of 120 strains were employed for this study.The strains were confirmed using molecular method and species-specific primers targeting the 16S ribosomal ribonucleic acid (rRNA). Polymerase chain reaction (PCR) was used to detect the presence of class 1 integrons and resistance genes using appropriate primers and conditions. The strains were analysed for the presence of the following antibiotic resistance genes - aadA, blaPSE, blaAMPC, blaIMP and tetC encoding  aminoglycosides, betalactamases, metallo-beta-lactamases (MBL) and tetracylines resistance respectively. On screening the isolates for the presence of class 1 integrons, 50/60 (83.3 %) clinical isolates and 46/60 (76.7 %) environmental isolates showed positive results (P > 0.05). In both clinical and environmental isolates, the highest occurring resistance genes were blaAMPC and tetC (encoding beta-lactamases and tetracylines respectively), while the least was observed in blaIMP (encoding metallo-beta-lactamases). In comparison, there was high significance difference (at P<0.01 significance level) in the resistance gene blaPSE between the clinical and environmental strains. The high prevalence of these resistance genes is a great threat in the treatment of Pseudomonas infections. Keywords: Pseudomonas aeruginosa, Resistance genes, Integrons, Beta-lactamases.


Pathogens ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 91
Author(s):  
Kevin Maclean ◽  
Fernande Olpa J Pankendem Njamo ◽  
Mahloro Hope Serepa-Dlamini ◽  
Kulsum Kondiah ◽  
Ezekiel Green

SCUBA divers are predisposed to otitis externa caused by Pseudomonas aeruginosa, which is becoming increasingly multi-drug resistant (MDR). The present work assessed the antibiotic resistance profiles of P. aeruginosa obtained from SCUBA divers and their environment in Sodwana Bay, South Africa. Bacterial isolates from a total of 137 random water and ear swab samples were identified using biochemical and molecular methods. P. aeruginosa strains were further evaluated for antibiotic susceptibility using the Kirby–Bauer assay. Double disk synergy test (DDST) to confirm metallo-β-lactamase (MBL) production and PCR amplification of specific antibiotic resistance genes was performed. All (100%) 22 P. aeruginosa isolates recovered were resistant to 6 of the β-lactams tested including imipenem but exhibited susceptibility to trimethoprim–sulfamethoxazole. MBL production was observed in 77% of isolates while the most prevalent extended-spectrum β-lactamase (ESBL) genes present included blaAmpC (86.9%) followed by blaTEM (82.6%). Sulfonamide resistance was largely encoded by sul1 (63.6%) and sul2 (77.3%) genes with a high abundance of class 1 integrons (77.3%) of which 18.2% carried both Intl1 and Intl2. P. aeruginosa found in Sodwana Bay exhibits multi-drug resistance (MDRce) to several pharmaceutically important drugs with the potential to transfer antibiotic resistance to other bacteria if the judicious use of antibiotics for their treatment is not practiced.


Author(s):  
Ting Yu ◽  
Huiying Yang ◽  
Jun Li ◽  
Fangzhou Chen ◽  
Lingfei Hu ◽  
...  

Pseudomonas aeruginosa is noted for its intrinsic antibiotic resistance and capacity of acquiring additional resistance genes. In this study, the genomes of nine clinical P. aeruginosa isolates were fully sequenced. An extensive genetic comparison was applied to 18 P. aeruginosa accessory genetic elements (AGEs; 13 of them were sequenced in this study and located within P. aeruginosa chromosomes) that were divided into four groups: five related integrative and conjugative elements (ICEs), four related integrative and mobilizable elements (IMEs), five related unit transposons, and two related IMEs and their two derivatives. At least 45 resistance genes, involved in resistance to 10 different categories of antibiotics and heavy metals, were identified from these 18 AGEs. A total of 10 β-lactamase genes were identified from 10 AGEs sequenced herein, and nine of them were captured within class 1 integrons, which were further integrated into ICEs and IMEs with intercellular mobility, and also unit transposons with intracellular mobility. Through this study, we identified for the first time 20 novel MGEs, including four ICEs Tn6584, Tn6585, Tn6586, and Tn6587; three IMEs Tn6853, Tn6854, and Tn6878; five unit transposons Tn6846, Tn6847, Tn6848, Tn6849, and Tn6883; and eight integrons In1795, In1778, In1820, In1784, In1775, In1774, In1789, and In1799. This was also the first report of two resistance gene variants blaCARB-53 and catB3s, and a novel ST3405 isolate of P. aeruginosa. The data presented here denoted that complex transposition and homologous recombination promoted the assembly and integration of AGEs with mosaic structures into P. aeruginosa chromosomes.


2004 ◽  
Vol 48 (10) ◽  
pp. 3996-4001 ◽  
Author(s):  
Yolanda Sáenz ◽  
Laura Briñas ◽  
Elena Domínguez ◽  
Joaquim Ruiz ◽  
Myriam Zarazaga ◽  
...  

ABSTRACT Seventeen multiple-antibiotic-resistant nonpathogenic Escherichia coli strains of human, animal, and food origins showed a wide variety of antibiotic resistance genes, many of them carried by class 1 and class 2 integrons. Amino acid changes in MarR and mutations in marO were identified for 15 and 14 E. coli strains, respectively.


2017 ◽  
Vol 62 (No. 3) ◽  
pp. 169-177 ◽  
Author(s):  
TH Chung ◽  
SW Yi ◽  
BS Kim ◽  
WI Kim ◽  
GW Shin

The present study sought to identify pathogens associated with septicaemia in the Chinese soft-shelled turtle (Pelodiscus sinensis) and to characterise antibiotic resistance in these pathogens. Twenty-three isolates recovered from the livers of diseased soft-shelled turtles were genetically identified as Aeromonas hydrophila (n = 8), A. veronii (n = 3), Citrobacter freundii (n = 4), Morganella morganii (n = 3), Edwardsiella tarda (n = 2), Wohlfahrtiimonas chitiniclastica (n = 1), Chryseobacterium sp. (n = 1), and Comamonas sp. (n = 1). Most isolates (n = 21) were resistant to ampicillin whereas a low percentage of isolates was susceptible to aminoglycosides (amikacin, gentamicin, and tobramycin). PCR assays and sequence analysis revealed the presence of the qnrS2 and bla<sub>TEM</sub> antibiotic resistance genes in all isolates. The bla<sub>DHA-1</sub>, bla<sub>CTX-M-14</sub> and bla<sub>CMY-2</sub> genes were harboured by 17.4% (n = 4), 13.5% (n = 3) and 8.7% (n = 2) of the strains, respectively. One or more tetracycline resistance genes were detected in 60.9% (n = 14) of the isolates. Four isolates (17.4%) harboured single or multiple class 1 integron cassettes. Collectively, a variety of bacterial pathogens were involved in the occurrence of septicaemia in Chinese soft-shelled turtles and most of the isolates had multi-antibiotic resistant phenotypes. To our knowledge, the present report is the first to identify W. chitiniclastica and Comamonas sp. as causes of septicaemia in soft-shelled turtles and the first to identify Aeromonas spp. with bla<sub>CTX-M-14</sub> and bla<sub>DHA-1</sub> resistance genes.


2017 ◽  
Vol 71 (1) ◽  
pp. 0-0 ◽  
Author(s):  
Anna Michalska-Falkowska ◽  
Paweł Tomasz Sacha ◽  
Henryk Grześ ◽  
Tomasz Hauschild ◽  
Piotr Wieczorek ◽  
...  

The effectiveness of carbapenems, considered as last-resort antimicrobials in severe infections, becomes compromised by bacterial resistance. The production of metallo-β-lactamases (MBLs) is the most significant threat to carbapenems activity among Pseudomonas aeruginosa. The aim of this study was to assess the presence and type of MBLs genes in carbapenem-resistant P. aeruginosa clinical strains, to identify the location of MBLs genes and to determine genetic relatedness between MBL-producers using pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST).The first identified MBL-positive (with blaVIM genes) P. aeruginosa strains were isolated from patients hospitalized in the University Clinical Hospital of Bialystok in the period from September 2012 to December 2013. Variants of MBLs genes and variable integron regions were characterized by PCR and sequencing. PFGE was performed after digesting of bacterial genomes by XbaI enzyme. By MLST seven housekeeping genes were analyzed for the determination of sequence type (ST). Three strains carried the blaVIM-2 gene and one harbored the blaVIM-4 gene. The blaVIM genes resided within class 1 integrons. PCR mapping of integrons revealed the presence of four different cassette arrays. Genetic relatedness analysis by PFGE classified VIM-positive strains into four unrelated pulsotypes (A–D). MLST demonstrated the presence of four (ST 111, ST27, and ST17) different sequence type including one previously undescribed new type of ST 2342. Antimicrobial susceptibility testing showed that VIM-positive strains were resistant to carbapenems, cephalosporins, aminoglycosides, and quinolones, intermediate to aztreonam, and susceptible only to colistin. Integrons mapping, PFGE, and MLST results may point to different origin of these strains and independent introduction into hospitalized patients.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hai-bei Li ◽  
Ai-ming Hou ◽  
Tian-jiao Chen ◽  
Dong Yang ◽  
Zheng-shan Chen ◽  
...  

Given its excellent performance against the pathogens, UV disinfection has been applied broadly in different fields. However, only limited studies have comprehensively investigated the response of bacteria surviving UV irradiation to the environmental antibiotic stress. Here, we investigated the antibiotic susceptibility of Pseudomonas aeruginosa suffering from the UV irradiation. Our results revealed that UV exposure may decrease the susceptibility to tetracycline, ciprofloxacin, and polymyxin B in the survival P. aeruginosa. Mechanistically, UV exposure causes oxidative stress in P. aeruginosa and consequently induces dysregulation of genes contributed to the related antibiotic resistance genes. These results revealed that the insufficient ultraviolet radiation dose may result in the decreased antibiotic susceptibility in the pathogens, thus posing potential threats to the environment and human health.


2018 ◽  
Vol 4 (12) ◽  
pp. 2051-2057 ◽  
Author(s):  
Fuzheng Zhao ◽  
Qing Hu ◽  
Hongqiang Ren ◽  
Xu-Xiang Zhang

UV irradiation disturbs the regulatory system of efflux pump proteins to sensitize P. aeruginosa to multiple antibiotics. The increasing susceptibility to rifampicin and vancomycin might be caused by UV-mediated mutations in antibiotic resistance genes.


Sign in / Sign up

Export Citation Format

Share Document