Study on the adsorption of bacteria in ceramsite and their synergetic effect on adsorption of heavy metals

2013 ◽  
Vol 69 (2) ◽  
pp. 407-413 ◽  
Author(s):  
Shan Qiu ◽  
Fang Ma ◽  
Xu Huang ◽  
Shanwen Xu

In this paper, heavy metal adsorption by ceramsite with or without Bacillus subtilis (B. subtilis) immobilization was studied, and the synergetic effect of ceramsite and bacteria was discussed in detail. To investigate the roles of the micro-pore structure of ceramsite and bacteria in removing heavy metals, the amount of bacteria immobilized on the ceramsite was determined and the effect of pH was evaluated. It was found that the immobilization of B. subtilis on the ceramsite was attributed to the electrostatic attraction and covalent bond. The scanning electron microscopy results revealed that, with the presence of ceramsite, there was the conglutination of B. subtilis cells due to the cell outer membrane dissolving. In addition, the B. subtilis immobilized ceramsite showed a different adsorption capacity for different heavy metals, with the adsorption capacity ranking of La3+ > Cu2+ > Mg2+ > Na+.

1982 ◽  
Vol 39 (3) ◽  
pp. 506-509 ◽  
Author(s):  
T. Bistricki ◽  
M. Munawar

A combination of scanning electron miscroscopy and energy dispersive X-ray spectroscopy (SEM-EDX) was found to be a very effective tool for characterizing the heavy metal load of Great Lakes phytoflagellates, diatoms, and green algae, and for the surveillance of heavy metal pollution. The sensitivity and short generation time of nannoplankton and the speed of the described technique makes this procedure a useful aid in contaminants research.Key words: scanning electron microscopy, X-ray microanalysis, nannoplankton, heavy metals, algae, phytoflagellates, Great Lakes, contaminants, bioaccumulation


2018 ◽  
Vol 14 (2) ◽  
pp. 323
Author(s):  
Elsa Ninda Karlinda Putri ◽  
Syahna Febrianastuti ◽  
Easy Vicky Maylinda ◽  
Ganjar Fadillah ◽  
Candra Purnawan

<p>Penelitian terkait pengaruh komposisi α-keratin/alginat terhadap kapasitas adsorpsi logam berat besi (Fe) telah dilakukan. Penelitian ini bertujuan untuk mengetahui karakter dan optimasi adsorpsi dari bioadsroben komposit α-keratin/alginat terhadap daya serap logam berat Fe dalam larutan air. Proses preparasi bioadsorben α-keratin/alginat dilakukan dengan metode enkapsulasi pada larutan CaCl<sub>2</sub> 2% (b/v). Karakterisasi bioadsorben dilakukan menggunakan <em>Fourier Transform Infra-Red</em> (FTIR),<em> Scanning Electron Microscopy</em> (SEM)<em> </em>dan proses adsorbsi dilakukan dengan metode<em> batch</em>. Hasil karakterisasi IR pada komposit α-keratin/alginat menunjukkan terdapatnya serapan pada bilangan gelombang 1140-820,75 cm<sup>-1 </sup>yang merupakan reduksi gugus <em>mannuronate</em> dari alginat. Hal ini menunjukan bahwa alginat telah terikat secara kimia dengan α-keratin. Adsorpsi logam Fe (3 ppm) dalam larutan dilakukan dengan variasi komposisi α-keratin:alginat secara berturut-turut sebagai berikut 1:1; 1:2; 1:3; 2:1 dan 3:1 (b/b). Hasil pengukuran menggunakan <em>Atomic Absorption Spectroscopy</em> (AAS) dengan metode kurva kalibrasi standar menunjukkan komposisi optimum penyerapan logam Fe (3 ppm) adalah 1:2 dengan kapasitas adsorpsi sebesar 205,64 mg/g. Hasil karakterisasi SEM pada komposit α-keratin:alginat komposisi 1:2 (b/b) yang memberikan kemampuan adsorpsi yang terbesar menunjukkan bahwa permukaan rambut manusia tidak tertutup secara menyeluruh sehingga gugus aktif dan celah-celah kecil pada komposit dapat berperan dalam proses adsorpsi logam berat besi (Fe).</p><p><strong>The </strong><strong>Effect </strong><strong>o</strong><strong>f α-Keratin</strong><strong>/</strong><strong>Alginate Bioadsorbent Composition </strong><strong>on</strong><strong> </strong><strong>the </strong><strong>Adsorption Capacity </strong><strong>o</strong><strong>f Heavy Metal </strong><strong>of Iron </strong><strong>(Fe)</strong><strong>.</strong> A study of the influence of α-keratin-alginate composition on the heavy metal adsorption of Fe has been performed. The research aims to determinate the character and adsorption optimation of α-keratin/alginate composite for Fe adsorption in aqueous solution. The preparation α-keratin/alginate composite was conducted by encapsulation method in CaCl<sub>2 </sub>2% solution. The characterization of bioadsorbent was performed by Fourier Transform Infra-Red (FTIR), Scanning Electron Microscopy (SEM) and adsorption process was conducted by batch method. The FTIR result on α-keratin/alginate shows that adsorption at wavenumber of 1140-820.75 cm<sup>-1</sup> which indicates the reduction of mannuronate group from alginate. This suggests that alginate was chemically bound with α-keratin. The adsorption of Fe (3 ppm) in the solution was carried out with variation of composition α-keratin:alginate of 1:1; 1:2; 1:3; 2:1; and 3:1 (w/w). The measurement using AAS (atomic absorption spectroscopy)<em> </em>with standar calibration curve method showed that optimum composition of Fe (3 ppm) adsorption was 1:2 (w/w) with adsorption capacity of 205.64 mg/g.  The SEM result on α-keratin/alginate 1:2 (w/w) which had the greatest adsorption capability shows that the surface of human hair was not completely closed thus the active groups and pores can play a role in the process of adsorption of heavy metal iron (Fe).</p>


Minerals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 486
Author(s):  
Alcina Johnson Sudagar ◽  
Slávka Andrejkovičová ◽  
Fernando Rocha ◽  
Carla Patinha ◽  
Maria R. Soares ◽  
...  

Metakaolins (MKs) prepared from low-grade kaolins located in the Alvarães (A) and Barqueiros (B) regions of Portugal were used as the aluminosilicate source to compare their effect on the compressive strength and heavy metal adsorption of geopolymers. Natural zeolite, an inexpensive, efficient adsorbent, was used as an additive in formulations to enhance geopolymers’ adsorption capacities and reduce MK utilization’s environmental footprint. Geopolymers were synthesized with the replacement of MK by zeolite up to 75 wt.% (A25, B25—25% MK 75% zeolite; A50, B50—50% MK 50% zeolite; A75, B75—75% MK 25% zeolite; A100, B100—100% MK). The molar ratios of SiO2/Al2O3 and Na2O/Al2O3 were kept at 1 to reduce the sodium silicate and sodium hydroxide environmental impact. Geopolymers’ crystallography was identified using X-ray diffraction analysis. The surface morphology was observed by scanning electron microscopy to understand the effect of zeolite incorporation. Chemical analysis using X-ray fluorescence spectroscopy and energy dispersive X-ray spectroscopy yielded information about the geopolymers’ Si/Al ratio. Compressive strength values of geopolymers obtained after 1, 14, and 28 days of curing indicate high strengths of geopolymers with 100% MK (A100—15.4 MPa; B100—32.46 MPa). Therefore, zeolite did not aid in the improvement of the compressive strength of both MK-based geopolymers. The heavy metal (Cd2+, Cr3+, Cu2+, Pb2+, and Zn2+) adsorption tests exhibit relatively higher adsorption capacities of Barqueiros MK-based geopolymers for all the heavy metals except Cd2+. Moreover, zeolite positively influenced divalent cations’ adsorption on the geopolymers produced from Barqueiros MK as B75 exhibits the highest adsorption capacities, but such an influence is not observed for Alvarães MK-based geopolymers. The general trend of adsorption of the heavy metals of both MK-based geopolymers is Pb2+ > Cd2+ > Cu2+ > Zn2+ > Cr3+ when fitted by the Langmuir isotherm adsorption model. The MK and zeolite characteristics influence geopolymers’ structure, strength, and adsorption capacities.


2019 ◽  
Vol 51 ◽  
pp. 20-30 ◽  
Author(s):  
Baharak Sajjadi ◽  
James William Broome ◽  
Wei Yin Chen ◽  
Daniell L. Mattern ◽  
Nosa O. Egiebor ◽  
...  

2015 ◽  
Vol 1130 ◽  
pp. 529-532
Author(s):  
Caroline Bertagnolli ◽  
Thierry Vincent ◽  
Eric Guibal

Composite materials have been synthesized by alginate or chitosan encapsulation of polyethylenimine (PEI) derivatives (obtained by glutaraldehyde grafting of histidine and carbon disulfide). Discrete or agglomerated PEI-derivative particles are immobilized in the macroporous network of biopolymer matrix (as shown by scanning electron microscopy and SEM-EDX analysis). The effect of pH and initial concentration on Zn (II) and Cu (II) sorption performance were analyzed. The incorporation of PEI-derivatives biopolymer matrix improves sorption performance in complex solutions (doped with CaCl2) compared to pristine biopolymer. Maximum sorption capacities range from 0.64 to 1 mmol L-1 for Zn (II) and from 1.13 to 1.67 mmol L-1 for Cu (II).


2017 ◽  
Vol 17 (1) ◽  
pp. 85-89
Author(s):  
B. Koomson ◽  
E. K. Asiam ◽  
W. Skinner ◽  
J. Addai-Mensah

This study was carried out on leaching of tailings at 30 ᵒC and 40 ᵒC. The mineralogical and chemical composition of the tailings material were determined by Quantitative X-Ray Diffractometry (QXRD) and Scanning Electron Microscopy combined with Energy Dispersive Spectroscopy (SEM-EDAX). The study revealed that the tailings contain sulphides (arsenopyrite and pyrite) which can leach to produce arsenic (As) and other ions in solution. The acid released during leaching depends on the temperature of leaching. More acid was produced at higher temperature (40 ᵒC) than lower temperature (30 ᵒC). It was established that arsenic precipitation from solution was higher at higher temperature (40 ᵒC) than lower temperature (30 ᵒC). Mimicking the study in a typical tailings environment, it could be proposed that As mobilisation will be enhanced at lower temperature (30 ᵒC) than at higher temperature (40 ᵒC). Keywords: Tailings, Leaching, Arsenopyrite, Heavy metals and Temperature


2020 ◽  
Vol 175 ◽  
pp. 09009
Author(s):  
Tatiana Bauer ◽  
Tatiana Minkina ◽  
Saglara Mandzhieva ◽  
Marina Burachevskaya ◽  
Maria Zharkova

Sorption of heavy metals on solid matrices such as soils is one of the key processes which determine the fate of contaminants in the environment. Knowledge of adsorption behavior of heavy metals using biochar is essential for their application in soil remediation. Using the adsorption method, the possibility of using a wood biochar to detoxify Fluvisols contaminated with heavy metals (for example, copper) was studied. It is shown that the addition of biochar increases the metal adsorption capacity of soil. The results were analysed using the Langmuir and Freindlich isotherm equations. It was concluded that biocar can be applied to immobilize heavy metals in contaminated soils.


Sign in / Sign up

Export Citation Format

Share Document