scholarly journals Comparing the Adsorption Performance of Multiwalled Carbon Nanotubes Oxidized by Varying Degrees for Removal of Low Levels of Copper, Nickel and Chromium(VI) from Aqueous Solutions

Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 723 ◽  
Author(s):  
Marko Šolić ◽  
Snežana Maletić ◽  
Marijana Kragulj Isakovski ◽  
Jasmina Nikić ◽  
Malcolm Watson ◽  
...  

Functionalized multiwalled carbon nanotubes (MWCNTs) have drawn wide attention in recent years as novel materials for the removal of heavy metals from the aquatic media. This paper investigates the effect that the functionalization (oxidation) process duration time (3 h or 6 h) has on the ability of MWCNTs to treat water contaminated with low levels of Cu(II), Ni(II) and Cr(VI) (initial concentrations 0.5–5 mg L−1) and elucidates the adsorption mechanisms involved. Adsorbent characterization showed that the molar ratio of C and O in these materials was slightly lower for the oxMWCNT6h, due to the higher degree of oxidation, but the specific surface areas and mesopore volumes of these materials were very similar, suggesting that prolonging the functionalization duration had an insignificant effect on the physical characteristics of oxidized multiwalled carbon nanotubes (oxMWCNTs). Increasing the Ph of the solutions from Ph 2 to Ph 8 had a large positive impact on the removal of Cu(II) and Ni(II) by oxMWCNT, but reduced the adsorption of Cr(VI). However, the ionic strength of the solutions had far less pronounced effects. Coupled with the results of fitting the kinetics data to the Elowich and Weber–Morris models, we conclude that adsorption of Cu(II) and Ni(II) is largely driven by electrostatic interactions and surface complexation at the interface of the adsorbate/adsorbent system, whereas the slower adsorption of Cr(VI) on the oxMWCNTs investigated is controlled by an additional chemisorption step where Cr(VI) is reduced to Cr(III). Both oxMWCNT3h and oxMWCNT6h have high adsorption affinities for the heavy metals investigated, with adsorption capacities (expressed by the Freundlich coefficient KF) ranging from 1.24 to 13.2 (mg g−1)/(mg l−1)n, highlighting the great potential such adsorbents have in the removal of heavy metals from aqueous solutions.

2018 ◽  
Vol 69 (5) ◽  
pp. 1233-1239
Author(s):  
Raluca Madalina Senin ◽  
Ion Ion ◽  
Ovidiu Oprea ◽  
Rusandica Stoica ◽  
Rodica Ganea ◽  
...  

In this study, non-irradiated and weathered multiwalled carbon nanotubes (MWCNTs) obtained through irradiation, were studied as adsorbents for BPA, both nanomaterials being characterized before and after the adsorption process. The objectives of our investigation were to compare the characteristics of non-irradiated and irradiated MWCNTs, to evaluate the adsorption capacity of BPA by pristine and irradiated MWCNTs and to determine the variation of the kinetic, sorption and thermodynamic parameters during sorption process using both sorbents.


2014 ◽  
Vol 67 (1) ◽  
pp. 151 ◽  
Author(s):  
Yue Liu ◽  
Xiaojuan Hao ◽  
Lynne J. Waddington ◽  
Jieshan Qiu ◽  
Timothy C. Hughes

A facile method to modify the surface of multiwalled carbon nanotubes (MWCNTs) via electrostatic interactions between polyelectrolytes and oxidized MWCNTs was developed. Diblock copolymers containing poly[2-(methacryloyloxy)ethyltrimethylammonium chloride] (PMETAC), a positively charged block, and poly(ethylene glycol) methacrylate (PEGMA), a neutral block, with tailored molecular weights and low polydispersities were synthesized by reversible addition–fragmentation chain transfer (RAFT) polymerization. Acid treated-MWCNTs were coated with the RAFT diblock copolymers to improve their dispersibility in aqueous phosphate buffered saline (PBS) solution. The short positively charged PMETAC block was designed to attach the block copolymers to the surface of MWCNTs via electrostatic interactions, whereas the PEGMA block improved dispersibility of the MWCNTs in aqueous solutions. Extensive screening of the diblock copolymers with different degrees of polymerization (DP) showed that the dispersion stability of the polymer-coated MWCNTs in PBS was greatly improved with increasing chain length of the PEGMA block. In particular, the MWCNTs coated with a diblock copolymer containing PEGMA (DP = 118, the longest block investigated) showed superior dispersion stability in both water and PBS solution.


2017 ◽  
Vol 69 ◽  
pp. 261-267 ◽  
Author(s):  
Mohammad Saad Algamdi ◽  
Abdullah Saeed Alghamdi ◽  
Ibrahim Hotan Alsohaimi ◽  
Faiz Dakhil Allohybi ◽  
Ayoub Abdullah Alqadami

Sign in / Sign up

Export Citation Format

Share Document