scholarly journals PAH contents in road dust on principal roads collected nationwide in Japan and their influential factors

2015 ◽  
Vol 72 (7) ◽  
pp. 1062-1071 ◽  
Author(s):  
Noriatsu Ozaki ◽  
Yuma Akagi ◽  
Tomonori Kindaichi ◽  
Akiyoshi Ohashi

Fifty-four road dust samples were collected from principal roads (n = 37) and residential roads (n = 17) nationwide in Japan from March 2010 to November 2012. Sixteen polycyclic aromatic hydrocarbons (PAHs) and ignition loss (IL) were determined. The total PAH contents ranged from 62 to 6,325 ng g−1 with a geometric mean of 484 ng g−1. The IL ranged from 0.8 to 17% with a mean of 6%. The PAH contents were correlated with the IL contents, and the IL contents were dependent on the population density. From the PAH pattern analysis, the PAHs from road dust are considered to be mainly from diesel emissions.

2004 ◽  
Vol 327 (1-3) ◽  
pp. 135-146 ◽  
Author(s):  
Guor-Cheng Fang ◽  
Cheng-Nan Chang ◽  
Yuh-Shen Wu ◽  
Peter Pi-Cheng Fu ◽  
I-Lin Yang ◽  
...  

Proceedings ◽  
2018 ◽  
Vol 2 (23) ◽  
pp. 1505
Author(s):  
Samantha Arteaga-Del Angel ◽  
Brenda L. Valle-Hernandez ◽  
Violeta Mugica-Alvarez

Among the main pollutants emitted into the atmosphere by diesel combustion are the particles. Most of the studies suggest that the greatest impact on health by the particles is caused by some of the organic compounds such as the polycyclic aromatic hydrocarbons, which are highly toxic and carcinogenic compounds. Some of the strategies that are being implemented to mitigate these harmful particles emissions are the use of alternative fuels, such as biodiesel. In this research, the characterization of six fuels (diesel and five biodiesel, obtained from different raw materials) was carried out. Diesel:Biodiesel blends were prepared at 5, 10 and 20% of biodiesel on proportion to the diesel (B5, B10 and B20). Additionally, B100 was analyzed for some biodiesels. The particles emitted by the combustion of the different fuels were sampled and their concentration was determined. The organic compounds were extracted from the particles by ultrasound-assisted extraction and subsequently the polycyclic aromatic hydrocarbons (PAHs) were determined by gas chromatography coupled to mass spectrometry (GC-MS). In this study, it was observed that the use of biodiesel decreases the emission of particle concentration, but it is not significant. In the case of the concentrations of carcinogenic compounds (PAHs), the B20 biodiesel blends emissions had a statistically significant reduction compared to diesel emissions.


2012 ◽  
Vol 610-613 ◽  
pp. 2989-2994 ◽  
Author(s):  
Jing Ma ◽  
Ji San Zheng ◽  
Zu Yi Chen ◽  
Ming Hong Wu ◽  
Yuichi Horii ◽  
...  

Chlorinated polycyclic aromatic hydrocarbons (ClPAHs) are a group of halogenated contaminants found in the urban environment with a toxic potential similar to dioxins. Little is well-known on the distribution and characteristics of ClPAHs on urban surfaces. In this study, concentrations of 20 ClPAH congeners were measured in road dust and soil from crossroads along arterial traffic, park and lake areas, a chemical industrial complex, waste incineration power plants nearby, and a steel factory in Shanghai. ClPAHs are ubiquitous and log-normally distribute in urban surface with a range from 0.27 to 206 ng/g dw for dust, and with a range from 0.05 to 94.3 ng/g dw for soils. The highest mean concentration of total 20 ClPAHs is found in floor dust from a steel factory. ClPyr and ClPhe are predominant in road dust, which infers that ClPAHs detected in the urban surface dust samples originate from vehicle exhaust.


2005 ◽  
Vol 51 (3-4) ◽  
pp. 169-175 ◽  
Author(s):  
P. Pengchai ◽  
F. Nakajima ◽  
H. Furumai

This study aimed to estimate the origins of polycyclic aromatic hydrocarbons (PAHs) in size-fractionated road dust in Tokyo. First, seven categories of PAHs sources were defined: diesel vehicle exhaust, gasoline vehicle exhaust, tire, pavement, asphalt or bitumen, petroleum products excluding tire and asphalt, and combustion products except for those in vehicle engines. The 189 source data of 12-PAHs profiles were classified into 11 groups based on cluster analysis combined with principal component analysis. Next, 18 road dust samples were collected from eight streets in Tokyo and fractionated into four different particle-size-fractions: 0.1–45, 45–106, 106–250, and 250–2,000 μm. In order to estimate the contributions of the classified source groups (S1–S11) to PAHs in the road dust, multiple regression analysis was performed with 12-PAH profile of the road dust as dependent variable and average 12-PAHs profiles of the 11 source groups as 11 explanatory variables. Diesel vehicle exhaust, tire and pavement were the major contributors of PAHs in the fractionated road dust. Although the estimated contributions of the 11 source groups varied among the particle-size-fractions, there was no clear and consistent relationship between particle size and the major PAH contributor.


Sign in / Sign up

Export Citation Format

Share Document