Load limit of a UASB fed septic tank-treated domestic wastewater

2015 ◽  
Vol 72 (8) ◽  
pp. 1455-1461 ◽  
Author(s):  
Sunil Prasad Lohani ◽  
Rune Bakke ◽  
Sanjay N. Khanal

Performance of a 250 L pilot-scale up-flow anaerobic sludge blanket (UASB) reactor, operated at ambient temperatures, fed septic tank effluents intermittently, was monitored for hydraulic retention time (HRT) from 18 h to 4 h. The total suspended solids (TSS), total chemical oxygen demand (CODT), dissolved chemical oxygen demand (CODdis) and suspended chemical oxygen demand (CODss) removal efficiencies ranged from 20 to 63%, 15 to 56%, 8 to 35% and 22 to 72%, respectively, for the HRT range tested. Above 60% TSS and 47% CODT removal were obtained in the combined septic tank and UASB process. The process established stable UASB treatment at HRT ≥ 6 h, indicating a hydraulic load design limit. The tested septic tank–UASB combined system can be a low-cost and effective on-site sanitation solution.

2013 ◽  
Vol 67 (1) ◽  
pp. 24-32 ◽  
Author(s):  
Tarek Elmitwalli

Although the upflow anaerobic sludge blanket (UASB) reactor has been widely applied for domestic wastewater treatment in many developing countries, there is no sufficient mathematical model for proper design and operation of the reactor. An empirical model based on non-linear regression was developed to represent the physical and chemical removal of suspended solids (SS) in the reactor. Moreover, a simplified dynamic model based on ADM1 and the empirical model for SS removal was developed for anaerobic digestion of the entrapped SS and dissolved matter in the wastewater. The empirical model showed that effluent suspended chemical oxygen demand (CODss) concentration is directly proportional to the influent CODss concentration and inversely proportional to both the hydraulic retention time (HRT) of the reactor and wastewater temperature. For obtaining sufficient CODss removal, the HRT of the UASB reactor must be higher than 4 h, and higher HRT than 12 h slightly improved CODss removal. The dynamic model results showed that the required time for filling the reactor with sludge mainly depends on influent total chemical oxygen demand (CODt) concentration and HRT. The influent CODt concentration, HRT and temperature play a crucial role on the performance of the reactor. The results indicated that shorter HRT is needed for optimization of CODt removal, as compared with optimization of CODt conversion to methane. Based on the model results, the design HRT of the UASB reactor should be selected based on the optimization of wastewater conversion and minimization of biodegradable SS accumulation in the sludge bed, not only based on COD removal, to guarantee a stable reactor performance.


2017 ◽  
Vol 8 (1) ◽  
pp. 113-122 ◽  
Author(s):  
Martín Alejandro Iribarnegaray ◽  
María Soledad Rodriguez-Alvarez ◽  
Liliana Beatriz Moraña ◽  
Walter Alfredo Tejerina ◽  
Lucas Seghezzo

Abstract In a case study located in suburban sectors of the metropolitan area of the Lerma Valley (Valle de Lerma), in the province of Salta (Argentina), 24 informal decentralized wastewater treatment systems (DWWTS) were evaluated. The analyzed systems had three general configurations: A, septic tank; B, septic tank combined with upflow anaerobic sludge blanket (UASB) reactor; C, septic tank combined with UASB and a final filtration step. Statistically significant differences (p < 0.05) were observed in effluent quality, measured as total coliforms, thermotolerant coliforms, and chemical oxygen demand (COD). Treatment A was the most inefficient, and was statistically different from B and C; there were no significant differences between the latter two. Thermotolerant coliform concentrations were high in all analyzed systems and did not comply with local discharge standards in soakaway pits or in the ground. The lack of a final disinfection step in these systems is thus a weakness that needs to be addressed. The formal inclusion of DWWTS in urban planning could reduce overall investment costs, as long as the best technologies are selected for each case. Incorporation of DWWTS in formal urban planning requires an open debate in which the social perspectives of all relevant users need to be considered.


2012 ◽  
Vol 518-523 ◽  
pp. 2625-2630 ◽  
Author(s):  
Ya Dong Guo ◽  
Cui Ting Fu ◽  
Guo Rong Liu ◽  
Chun Shuang Liu

A pilot-scale test was conducted with an up-flow anaerobic sludge blanket (UASB) treating pharmaceutical wastewater containing berberine. The aim of this study was to investigate the performance of UASB in the condition of a high chemical oxygen demand (COD) loading rate from 4.64 to 8.68 kg/m3d and a wide berberine concentration from 254 to 536 mg/L, in order to provide a reference for treating the similar pharmaceutical wastewater containing berberine. The results demonstrated that the UASB average percentage reduction in COD and berberine 68.14% and 57.39%, respectively. Granular sludge was formed during this process. In addition, a model, built on the back propagation neural network (BPNN) theory and linear regression techniques was developed for the simulation of the UASB system performance in the biodegradation of pharmaceutical wastewater containing berberine. The average errors of COD and berberine were -0.55% and 0.24%, respectively. The results indicated that this model built on the BPNN theory was well-fitted to the detected data, and was able to simulate and predict the removal of COD and berberine by UASB reactor.


2014 ◽  
Vol 4 (02) ◽  
Author(s):  
Rina S. Soetopo ◽  
Sri Purwati ◽  
Henggar Hardiani ◽  
Mukharomah Nur Aini ◽  
Krisna Adhitya Wardhana

A continuous pilot scale study has been conducted to investigate the effectiveness of anaerobic digestion of biological sludge. The sludge has a total solid content of 0.53% - 1.1%, pH of 7.20 to 7.32. Its organic content is about 97 %, The research were conducted in two stages, which are acidification (performed in 3 m3 the Continously Stirred Tank Reactor/CSTR at pH of 5.5 to 6.0) and methanation (performed in 5 m3 the Up Flow Anaerobic Sludge Blanket/UASB reactor at pH 6.5 to 7.0). The retention time (RT) was gradually shortened from 6 days to 1 day for acidification and from 8 days to 2 days for methanation. The results showed that operating the CSTR at the RT of 1 day and the organic loading of 8.23 g Volatile Solid (VS)/m3.day could produce Volatile Fatty Acid (VFA) at an average value of 17.3 g/kg VS.day. Operating the UASB reactor at the RT of 2 days and the organic loading (Chemical Oxygen Demand/COD) of 2.4 kg COD/m3.day could produce biogas at an average value of 66.3 L/day, with an average methane content of 69.9%, methane rate of 0.17 L CH4/g COD reduction or 19.06 L CH4/kg VS. Furthermore, methanation could reduce COD at an average value of 51.2 %, resulting in the effluent average value of COD filtrate and COD total of 210.1 mg/L and 375.2 mg /L, respectively.Keywords: acidification, methanation, CSTR, UASB, biogas ABSTRAKPercobaan digestasi anaerobik lumpur IPAL biologi industri kertas secara kontinyu skala pilot telah dilakukan di industri kertas dengan tujuan mengkaji efektivitas proses digestasi anaerobik dalam mengolah lumpur tersebut. Lumpur yang digunakan memiliki total solids sekitar 0,53% – 1,1%, pH netral (7,20 – 7,32) dengan komponen utama senyawa organik sekitar 97%. Percobaan dilakukan dalam dua tahap yaitu asidifikasi dalam reaktor CSTR berkapasitas 3 m3 pada pH 5,5 – 6,0 dan metanasi dalam reaktor UASB berkapasitas 5 m3 pada pH 6,5 – 7,0. Percobaan dilakukan dengan waktu retensi yang dipersingkat secara bertahap dari 6 hari ke 1 hari untuk proses asidifikasi dan dari 8 hari ke 2 hari untuk proses metanasi. Hasil percobaan menunjukkan bahwa pengoperasian reaktor CSTR dengan waktu retensi 1 hari dan beban organik 8,3 g VS/m3.hari dapat menghasilkan VFA rata-rata 17,3 g/kg VS.hari dengan kisaran 8,36 – 30,59 g/kg VS.hari, sedangkan pengoperasian reaktor UASB pada waktu retensi 2 hari dan beban organik 2,4 kg COD/m3.hari dapat menghasilkan biogas rata-rata 66,3 L/hari dengan kadar metana rata-rata 69,9% atau 0,17 L CH4/g COD reduksi atau 19,06 L CH4/kg VS. Selain itu proses metanasi dapat menurunkan COD terlarut rata-rata 51,2%, dengan konsentrasi efluen COD terlarut  rata-rata 210,1 mg/L dan COD total rata-rata 375,2 mg/L.Kata kunci: asidifikasi, metanasi, CSTR, UASB, biogas


1999 ◽  
Vol 40 (8) ◽  
pp. 137-143 ◽  
Author(s):  
R. G. Penetra ◽  
M. A. P. Reali ◽  
E. Foresti ◽  
J. R. Campos

This paper presents the results of a study performed with a lab-scale dissolved-air flotation (LSDAF) unit fed with previously coagulated effluent from a pilot scale up-flow anerobic sludge blanket (UASB) reactor treating domestic sewage. Physical operational conditions for coagulation (rapid mix) and flocculation/flotation were maintained constant. Chemical (FeCl3) dosages ranged from 30 to 110 mg.l−1. The effect of pH was also verified in the range of 5.1 to 7.6 for each dosage. Best results were achieved for 65 mg.l−1 of FeCl3 and pH values between 5.3 and 6.1. For these conditions, the removal efficiencies obtained in the LSDAF unit were: between 87% and 91% for chemical oxygen demand (COD), between 95% and 96% for total phosphate (TP), 94% for total suspended solids (TSS), between 96% and 97% for turbidity (TU), between 90% and 93% for apparent color (AC) and more than 96% for sulfide (S). For the UASB-DAF system, global efficiencies would be around 98% for COD, 98% for TP, 98.4% for TSS, 99.3% for TU and 98% for AC. The stripped gases treatment is desirable.


2010 ◽  
Vol 113-116 ◽  
pp. 1031-1035 ◽  
Author(s):  
Yi Sun ◽  
Zi Rui Guo ◽  
Xiao Ye Liu ◽  
Yong Feng Li

In order to disscuss the ability of H2-production and wastewater treatment, a up-flow anaerobic sludge bed (UASB) using a synthesize substrate with brown sugar wastewater was conducted to investigate the hydrogen yield, hydrogen producing rate, fermentation type of biohydrogen production, and the chemical oxygen demand (COD) removal rate, respectively. In this paper, UASB reactor was seeded with sludge from the Harbin Wenchang Sewage treatment plant dewatered sludge. Successful start-up of the reactor was achieved within 40 days at 35±1°C.The concentration of chemical oxygen demand (COD) in influent is increased from 1100mg/L . When it reached maximum, the loading rate was adjusted in a small way and indicators such as VFA, pH and COD in effluent as well as gas production are observed. The most relevant parameters were calibrated with lab-scale experimental data. These experimental results clearly showed that, the most proper corresponding organic loading rate (OLR) and hydraulic retention time (HRT) were 6 kg/ (m3.d)(COD=6000mg/L)and 24 h respectively. Up to 85% of COD was removed and the CH4 production rate of 3.2 m3 / (m3 .d) was obtained. The produced biogas contained 72% of CH4. In the mean time, anaerobic sludge multiplies more faster and exiguous particles appeared. Granules with diameter 1-3mm.


2002 ◽  
Vol 45 (10) ◽  
pp. 243-248 ◽  
Author(s):  
L. Seghezzo ◽  
R.G. Guerra ◽  
S.M. González ◽  
A.P. Trupiano ◽  
M.E. Figueroa ◽  
...  

The performance of a sewage treatment system consisting of a settler followed by an Upflow Anaerobic Sludge Bed (UASB) reactor is described. Mean ambient and sewage temperature were 16.5 and 21.6°C, respectively. Total Chemical Oxygen Demand (CODt) concentration averaged 224.2 and 152.6 mg/L, for raw and settled sewage, respectively. The effluent concentration was 68.5 mgCODt/L. Total and suspended COD removal efficiencies of approximately 70 and 80%, respectively, have been observed in the system at a mean Hydraulic Retention Time (HRT) of 2 + 5 h. Maximum COD removal efficiency was achieved in the UASB reactor when upflow velocity (Vup) was 0.43 m/h (HRT = 6 h). Mean Specific Methanogenic Activity (SMA) and Volatile Suspended Solids (VSS) concentration in the granular sludge bed were 0.11 gCOD-CH4/gVSS.d and 30.0 gVSS/Lsludge, respectively. SMA was inversely related to VSS concentration, and both parameters varied along the sludge bed height. The Solids Retention Time (SRT) in the reactor was 450 days. Sludge characteristics have not been affected by changes of up to one month in Vup in the range 0.28–0.85 m/h (HRT 3–9 h). This system or two UASB reactors in series could be an alternative for sewage treatment under moderate temperature conditions.


2001 ◽  
Vol 43 (8) ◽  
pp. 91-98 ◽  
Author(s):  
M. A. P. Reali ◽  
J. R. Campos ◽  
R. G. Penetra

This paper presents the results of a study performed with a lab-scale batch DAF unit fed with previously coagulated (with FeCl3 or cationic polymer) effluent from a pilot scale up-flow anaerobic sludge blanket (UASB) reactor treating domestic sewage. The adequate coagulation/flocculation conditions – chemical dosage, time (Tf) and mean velocity gradient (Gf) in the flocculation step – and air requirements for flotation process were investigated. Best results were achieved for 65 mg.l−1 of FeCl3 at Tf around 15 min and Gf of 80 s−1. In the assays where only polymer was applied, 7 mg.l−1 of cationic polymer dosage gave optimum removals with Tf around 15 min and Gf of 30 s−1. Air requirements ranged from 9.5 to 19.0 g of air.m−1 wastewater. Best TSS (95% and residual of 2 mg.l−1), COD (85% and residual of 20 mg.l−1) and total phosphate (95% and residual of 0.6 mg.l−1) removals were obtained when applying FeCl3, although the use of cationic polymer also produced good level of TSS (74% and residual of14 mg.l−1) and COD (75% and residual of 45 mg.l−1) removals. For the UASB-DAF (batch) system and FeCl3, global efficiencies would be 97.2% for COD, 97.9% for phosphate and 98.9% for TSS.


2009 ◽  
Vol 59 (11) ◽  
pp. 2265-2272 ◽  
Author(s):  
S. Satyanarayan ◽  
A. Karambe ◽  
A. P. Vanerkar

Herbal pharmaceutical industry has grown tremendously in the last few decades. As such, literature on the treatment of this wastewater is scarce. Water pollution control problems in the developing countries need to be solved through application of cost effective aerobic/anaerobic biological systems. One such system—the upflow anaerobic sludge blanket (UASB) process which is known to be cost effective and where by-product recovery was also feasible was applied for treatment of a high strength wastewater for a period of six months in a pilot scale upflow anaerobic sludge blanket (UASB) reactor with a capacity of 27.44 m3. Studies were carried out at various organic loading rates varying between 6.26 and 10.33 kg COD/m3/day and hydraulic retention time (HRT) fluctuating between 33 and 43 hours. This resulted in chemical oxygen demand (COD), biochemical oxygen demand (BOD) and suspended solids (SS) removal in the range of 86.2%–91.6%, 90.0%–95.2% and 62.6%–68.0% respectively. The biogas production varied between 0.32–0.47 m3/kg COD added. Sludge from different heights of UASB reactor was collected and subjected to scanning electron microscopy (SEM). The results indicated good granulation with efficient UASB reactor performance.


2011 ◽  
Vol 64 (10) ◽  
pp. 1959-1966 ◽  
Author(s):  
K. Syutsubo ◽  
W. Yoochatchaval ◽  
I. Tsushima ◽  
N. Araki ◽  
K. Kubota ◽  
...  

In this study, continuous operation of a pilot-scale upflow anaerobic sludge blanket (UASB) reactor for sewage treatment was conducted for 630 days to investigate the physical and microbial characteristics of the retained sludge. The UASB reactor with a working volume of 20.2 m3 was operated at ambient temperature (16–29 °C) and seeded with digested sludge. After 180 days of operation, when the sewage temperature had dropped to 20 °C or lower, the removal efficiency of both total suspended solids (TSS) and total biochemical oxygen demand (BOD) deteriorated due to washout of retained sludge. At low temperature, the cellulose concentration of the UASB sludge increased owing to the rate limitation of the hydrolytic reaction of suspended solids in the sewage. However, after an improvement in sludge retention (settleability and concentration) in the UASB reactor, the process performance stabilized and gave sufficient results (68% of TSS removal, 75% of total BOD removal) at an hydraulic retention time (HRT) of 9.7 h. The methanogenic activity of the retained sludge significantly increased after day 246 due to the accumulation of Methanosaeta and Methanobacterium following the improvement in sludge retention in the UASB reactor. Acid-forming bacteria from phylum Bacteroidetes were detected at high frequency; thus, these bacteria may have an important role in suspended solids degradation.


Sign in / Sign up

Export Citation Format

Share Document