Preparation and photoelectrocatalytic performance of N-doped TiO2/NaY zeolite membrane composite electrode material

2015 ◽  
Vol 73 (3) ◽  
pp. 486-492 ◽  
Author(s):  
Zhi-Lin Cheng ◽  
Shuai Han

A novel composite electrode material based on a N-doped TiO2-loaded NaY zeolite membrane (N-doped TiO2/NaY zeolite membrane) for photoelectrocatalysis was presented. X-ray diffraction (XRD), scanning electron microscopy (SEM), UV–visible (UV-vis) and X-ray photoelectron spectroscopy (XPS) characterization techniques were used to analyze the structure of the N-doped TiO2/NaY zeolite membrane. The XRD and SEM results verified that the N-doped TiO2 nanoparticles with the size of ca. 20 nm have been successfully loaded on the porous stainless steel-supported NaY zeolite membrane. The UV-vis result showed that the N-doped TiO2/NaY zeolite membrane exhibited a more obvious red-shift than that of N-TiO2 nanoparticles. The XPS characterization revealed that the doping of N element into TiO2 was successfully achieved. The photoelectrocatalysis performance of the N-doped TiO2/NaY zeolite membrane composite electrode material was evaluated by phenol removal and also the effects of reaction conditions on the catalytic performance were investigated. Owing to exhibiting an excellent catalytic activity and good recycling stability, the N-doped TiO2/NaY zeolite membrane composite electrode material was of promising application for photoelectrocatalysis in wastewater treatment.

Materials ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 1847 ◽  
Author(s):  
Chrysi Kapridaki ◽  
Nikolaos Xynidis ◽  
Eleftheria Vazgiouraki ◽  
Nikolaos Kallithrakas-Kontos ◽  
Pagona Maravelaki-Kalaitzaki

Iron-doped TiO2 nanoparticles, ranging in Fe concentrations from 0.05 up to 1.00% w/w, were synthesized through a simple sol-gel method. Fourier-transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), Ultraviolet-Visible (UV-Vis) spectroscopy, nitrogen adsorption−desorption isotherms, X-ray photoelectron spectroscopy (XPS), and X-ray absorption near-edge structure spectroscopy (XANES) were used to characterize the synthesized nanoparticles. The characterization of the Fe-doped TiO2 nanoparticles revealed the predominant presence of anatase crystalline form, as well as the incorporation of the Fe3+ ions into the crystal lattice of TiO2. The photocatalytic assessment of the Fe-doped TiO2 nanoparticles indicated that the low iron doping titania (0.05 and 0.10% w/w) have a positive effect on the photocatalytic degradation of Methyl Orange under visible radiation. Moreover, FTIR monitoring of calcium hydroxide pastes enriched with low Fe-doped TiO2 revealed enhancement of carbonation at both early and later stages. Improved photocatalytic performance and increased lime carbonation, observed in lime coatings with low Fe-doped TiO2 admixtures, established them as invaluable contributors to the protection of the built environment.


Author(s):  
Xinyue Li ◽  
Marco Fortunato ◽  
Anna Maria Cardinale ◽  
Angelina Sarapulova ◽  
Christian Njel ◽  
...  

AbstractNickel aluminum layered double hydroxide (NiAl LDH) with nitrate in its interlayer is investigated as a negative electrode material for lithium-ion batteries (LIBs). The effect of the potential range (i.e., 0.01–3.0 V and 0.4–3.0 V vs. Li+/Li) and of the binder on the performance of the material is investigated in 1 M LiPF6 in EC/DMC vs. Li. The NiAl LDH electrode based on sodium alginate (SA) binder shows a high initial discharge specific capacity of 2586 mAh g−1 at 0.05 A g−1 and good stability in the potential range of 0.01–3.0 V vs. Li+/Li, which is better than what obtained with a polyvinylidene difluoride (PVDF)-based electrode. The NiAl LDH electrode with SA binder shows, after 400 cycles at 0.5 A g−1, a cycling retention of 42.2% with a capacity of 697 mAh g−1 and at a high current density of 1.0 A g−1 shows a retention of 27.6% with a capacity of 388 mAh g−1 over 1400 cycles. In the same conditions, the PVDF-based electrode retains only 15.6% with a capacity of 182 mAh g−1 and 8.5% with a capacity of 121 mAh g−1, respectively. Ex situ X-ray photoelectron spectroscopy (XPS) and ex situ X-ray absorption spectroscopy (XAS) reveal a conversion reaction mechanism during Li+ insertion into the NiAl LDH material. X-ray diffraction (XRD) and XPS have been combined with the electrochemical study to understand the effect of different cutoff potentials on the Li-ion storage mechanism. Graphical abstract The as-prepared NiAl-NO3−-LDH with the rhombohedral R-3 m space group is investigated as a negative electrode material for lithium-ion batteries (LIBs). The effect of the potential range (i.e., 0.01–3.0 V and 0.4–3.0 V vs. Li+/Li) and of the binder on the material’s performance is investigated in 1 M LiPF6 in EC/DMC vs. Li. Ex situ X-ray photoelectron spectroscopy (XPS) and ex situ X-ray absorption spectroscopy (XAS) reveal a conversion reaction mechanism during Li+ insertion into the NiAl LDH material. X-ray diffraction (XRD) and XPS have been combined with the electrochemical study to understand the effect of different cutoff potentials on the Li-ion storage mechanism. This work highlights the possibility of the direct application of NiAl LDH materials as negative electrodes for LIBs.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1934 ◽  
Author(s):  
Jing Xu ◽  
Haiying Wang ◽  
Zhongpo Zhou ◽  
Zhaorui Zou

In this work, undoped, N-doped, WO3-loaded undoped, and WO3-loaded with N-doped TiO2 rutile single-crystal wafers were fabricated by direct current (DC) magnetron sputtering. N-doping into TiO2 and WO3 loading onto TiO2 surface were used to increase and decrease oxygen vacancies. Various measurements were conducted to analyze the structural and magnetic properties of the samples. X-ray diffraction results showed that the N-doping and WO3 loading did not change the phase of all samples. X-ray photoelectron spectroscopy results revealed that W element loaded onto rutile single-crystal wafers existed in the form of WO3. UV-Vis spectrometer results showed that the absorption edge of WO3-loaded undoped and WO3-loaded with N-doped TiO2 rutile single-crystal wafers had red shift, resulting in a slight decrease in the corresponding band gap. Photoluminescence spectra indicated that oxygen vacancies existed in all samples due to the postannealing atmosphere, and oxygen vacancies density increased with N-doping, while decreasing with WO3 loading onto TiO2 surface. The magnetic properties of the samples were investigated, and the saturation magnetization values were in the order N-doped > WO3-loaded with N-doped > undoped > WO3-loaded undoped rutile single-crystal wafers, which was the same order as the oxygen vacancy densities of these samples. N-doping improved the saturation magnetization values, while WO3-loaded decreased the saturation magnetization values. This paper reveals that the magnetic properties of WO3-loaded with N-doped rutile single-crystal wafers originate from oxygen vacancies.


Author(s):  
Irwing M. Ramírez-Sánchez ◽  
Erick R. Bandala

Iron Doped TiO2 nanoparticles (Fe-TiO2) were synthesized and photocatalitically investigated under high and low fluence values of UV-radiation. The Fe-TiO2 physical characterization was performed using X-ray Powder Diffraction (XRD), Brunauer-Emmett-Teller (BET) surface area analysis, Transmission Electron Microscope (TEM), Scanning Electron Microscope (SEM), Diffuse Reflectance Spectroscopy (DRS), and X-Ray Photoelectron Spectroscopy (XPS) technique. The XPS evidenced that ferric ion (Fe3+) was in the lattice of TiO2 and co-dopants no intentionally added were also present due to the precursors of the synthetic method. The Fe3+ concentration played a key role in the photocatalytic generation of hydroxyl radical (•OH) and estriol (E3) degradation. Fe-TiO2 materials accomplished E3 degradation, and it was found that the catalyst with 0.3 at. % content of Fe (0.3 Fe-TiO2) enhanced the photocatalytic activity under low UV-irradiation compared with no intentionally Fe-added TiO2 (zero-iron TiO2) and Aeroxide® TiO2 P25. Furthermore, the enhanced photocatalytic activity of 0.3 Fe-TiO2 under low UV-irradiation may have applications when radiation intensity must be controlled, as in medical applications, or when strong UV absorbing species are present in water.


2018 ◽  
Vol 282 ◽  
pp. 263-267
Author(s):  
Quoc Toan Le ◽  
Els Kesters ◽  
Yuya Akanishi ◽  
Marleen H. van der Veen ◽  
Atsushi Mizutani ◽  
...  

The etching characteristics of ECD cobalt in different cleaning solutions were characterized using four-point probe, spectroscopic ellipsometry, and X-ray photoelectron spectroscopy. 0.05% HF solution with saturated dissolved oxygen concentration was found to result in a substantial etch of ECD cobalt (~5 nm/min). In contrast, cleaning in the SC1 1:4:100 mixture and the formulated mixture led to a significantly lower etch amount, which could be explained by the formation of a passivation layer at the surface. XPS characterization indicated the formation of a cobalt hydroxide at the surface. The electrical evaluation of the DD structure carried out after cleaning using the formulated chemical mixture and subsequent metallization showed good yield for the 22 nm Kelvin vias, testifying an efficient cleaning of the Co surface at the via bottom.


Materials ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 2817 ◽  
Author(s):  
Feng Zhan ◽  
Lei Xiong ◽  
Fang Liu ◽  
Chenying Li

In this study, we proposed a novel and facile method to modify the surface of TiO2 nanoparticles and investigated the influence of the surface-modified TiO2 nanoparticles as an additive in a polyurethane (PU) coating. The hyperbranched polymers (HBP) were grafted on the surface of TiO2 nanoparticles via the thiol-yne click chemistry to reduce the aggregation of nanoparticles and increase the interaction between TiO2 and polymer matrices. The grafting of HBP on the TiO2 nanoparticles surface was investigated by means of X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Fourier transform infrared (FT-IR), nuclear magnetic resonance (NMR) and thermogravimetry analysis (TGA). The thermal and mechanical properties of nanocomposite coatings containing various amounts of TiO2 nanoparticles were measured by dynamic mechanical thermal (DMTA) and tensile strength measurement. Moreover, the surface structure and properties of the newly prepared nanocomposite coatings were examined. The experimental results demonstrate that the incorporation of the surface-modified TiO2 nanoparticles can improve the mechanical and thermal properties of nanocomposite coatings. The results also reveal that the surface modification of TiO2 with the HBP chains improves the nanoparticle dispersion, and the coating surface shows a lotus leaf-like microstructure. Thus, the functional nanocomposite coatings exhibit superhydrophobic properties, good photocatalytic depollution performance, and high stripping resistance.


Materials ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 937 ◽  
Author(s):  
Roberto Nasi ◽  
Serena Esposito ◽  
Francesca Freyria ◽  
Marco Armandi ◽  
Tanveer Gadhi ◽  
...  

TiO2 nanoparticles containing 0.0, 1.0, 5.0, and 10.0 wt.% Mo were prepared by a reverse micelle template assisted sol–gel method allowing the dispersion of Mo atoms in the TiO2 matrix. Their textural and surface properties were characterized by means of X-ray powder diffraction, micro-Raman spectroscopy, N2 adsorption/desorption isotherms at −196 °C, energy dispersive X-ray analysis coupled to field emission scanning electron microscopy, X-ray photoelectron spectroscopy, diffuse reflectance UV–Vis spectroscopy, and ζ-potential measurement. The photocatalytic degradation of Rhodamine B (under visible light and low irradiance) in water was used as a test reaction as well. The ensemble of the obtained experimental results was analyzed in order to discover the actual state of Mo in the final materials, showing the occurrence of both bulk doping and Mo surface species, with progressive segregation of MoOx species occurring only at a higher Mo content.


2015 ◽  
Vol 08 (05) ◽  
pp. 1550052
Author(s):  
Xiaobo Chen

In this work, we present an investigation of the photovoltaic properties of low-temperature (700°C annealing temperature) prepared P -doped Silicon nanocrystals ( Si   NCs ) in silicon nitride by ammonia sputtering followed by rapid thermal annealing (RTA). We examined how the flow rate of NH3influenced the structural properties of the annealed films by using Raman scattering, grazing incidence X-ray diffraction (GI XRD) and transmission electron microscopy (TEM), it was found that the appropriate flow rate of NH3is 3 sccm. For the sample deposited at the flow rate of 3 sccm, TEM image showed that Si   NCs were formed with a mean size about 3.7 nm and the density of ~ 2.1 × 1012cm-2; X-ray photoelectron spectroscopy (XPS) characterization showed the existence of Si – P bonds, indicating effective P doping; the average absorptance of higher than 65% and a significant amount of photocurrent makes it suitable for photoactive. Moreover, the experimental P -doped Si   NCs : Si3N4/ p - Si heterojunction solar cell has been fabricated, and the device performance was studied. The photovoltaic device fabricated exhibits an open-circuit voltage (VOC) and a short-circuit current density (JSC) of 470 mV and 3.25 mA/cm2, respectively.


2013 ◽  
Vol 802 ◽  
pp. 279-283
Author(s):  
Annop Chanhom ◽  
Pakorn Prajuabwan ◽  
Sunit Rojanasuwan ◽  
Anuchit Jaruvanawat ◽  
Adirek Rangkasikorn ◽  
...  

We investigate the increase of C-H vibration in benzene rings of pentacene molecule upon doping with indium by the X-ray photoelectron spectroscopy (XPS) characterization technique. The risen of C-H vibration spectral component is employed to demonstrate the charge transfer between In dopant atoms and C atoms in benzene rings of pentacene molecule. This experiment can be used to explain the same mechanism of charge transfer between In dopant atoms and C atoms in In-doped nickel-phthalocyanine(NiPc).


Sign in / Sign up

Export Citation Format

Share Document