Effect of Cleaning Chemistries on Cobalt: Surface Chemistries and Electrical Characterization

2018 ◽  
Vol 282 ◽  
pp. 263-267
Author(s):  
Quoc Toan Le ◽  
Els Kesters ◽  
Yuya Akanishi ◽  
Marleen H. van der Veen ◽  
Atsushi Mizutani ◽  
...  

The etching characteristics of ECD cobalt in different cleaning solutions were characterized using four-point probe, spectroscopic ellipsometry, and X-ray photoelectron spectroscopy. 0.05% HF solution with saturated dissolved oxygen concentration was found to result in a substantial etch of ECD cobalt (~5 nm/min). In contrast, cleaning in the SC1 1:4:100 mixture and the formulated mixture led to a significantly lower etch amount, which could be explained by the formation of a passivation layer at the surface. XPS characterization indicated the formation of a cobalt hydroxide at the surface. The electrical evaluation of the DD structure carried out after cleaning using the formulated chemical mixture and subsequent metallization showed good yield for the 22 nm Kelvin vias, testifying an efficient cleaning of the Co surface at the via bottom.

OSA Continuum ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 879
Author(s):  
Brian I. Johnson ◽  
Tahereh G. Avval ◽  
R. Steven Turley ◽  
Matthew R. Linford ◽  
David D. Allred

2015 ◽  
Vol 08 (05) ◽  
pp. 1550052
Author(s):  
Xiaobo Chen

In this work, we present an investigation of the photovoltaic properties of low-temperature (700°C annealing temperature) prepared P -doped Silicon nanocrystals ( Si   NCs ) in silicon nitride by ammonia sputtering followed by rapid thermal annealing (RTA). We examined how the flow rate of NH3influenced the structural properties of the annealed films by using Raman scattering, grazing incidence X-ray diffraction (GI XRD) and transmission electron microscopy (TEM), it was found that the appropriate flow rate of NH3is 3 sccm. For the sample deposited at the flow rate of 3 sccm, TEM image showed that Si   NCs were formed with a mean size about 3.7 nm and the density of ~ 2.1 × 1012cm-2; X-ray photoelectron spectroscopy (XPS) characterization showed the existence of Si – P bonds, indicating effective P doping; the average absorptance of higher than 65% and a significant amount of photocurrent makes it suitable for photoactive. Moreover, the experimental P -doped Si   NCs : Si3N4/ p - Si heterojunction solar cell has been fabricated, and the device performance was studied. The photovoltaic device fabricated exhibits an open-circuit voltage (VOC) and a short-circuit current density (JSC) of 470 mV and 3.25 mA/cm2, respectively.


2013 ◽  
Vol 802 ◽  
pp. 279-283
Author(s):  
Annop Chanhom ◽  
Pakorn Prajuabwan ◽  
Sunit Rojanasuwan ◽  
Anuchit Jaruvanawat ◽  
Adirek Rangkasikorn ◽  
...  

We investigate the increase of C-H vibration in benzene rings of pentacene molecule upon doping with indium by the X-ray photoelectron spectroscopy (XPS) characterization technique. The risen of C-H vibration spectral component is employed to demonstrate the charge transfer between In dopant atoms and C atoms in benzene rings of pentacene molecule. This experiment can be used to explain the same mechanism of charge transfer between In dopant atoms and C atoms in In-doped nickel-phthalocyanine(NiPc).


2012 ◽  
Vol 512-515 ◽  
pp. 971-974
Author(s):  
Jian Yi ◽  
Xiao Dong He ◽  
Yue Sun ◽  
Zhi Peng Xie ◽  
Wei Jiang Xue ◽  
...  

The sp3C doped SiC superhard nanocomposite films had been deposited on stainless steel (SS) substrates at different temperature by electron beam-physical vapor deposition (EB-PVD). The sp3C doped SiC film was studied by grazing incidence X-ray asymmetry diffraction (GIAXD), and X-ray photoelectron spectroscopy (XPS). The results of GIAXD showed that the sp3 doped SiC nanocomposite films were not perfect crystalline, which was composed with fine SiC nanocrystals, and a second phase very similar with diamond like carbon (DLC). XPS analysis showed that the excess C existing in films and turned from diamond into DLC from the surface to inner of film.


Minerals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 39
Author(s):  
Liu Yang ◽  
Xiaowen Zhou ◽  
Huashan Yan ◽  
Hongliang Zhang ◽  
Xiaohe Liu ◽  
...  

The galvanic interaction between chalcopyrite and monoclinic pyrrhotite and its effect on flotation separation were studied using monomineral flotation tests, adsorption capacity tests, X-ray photoelectron spectroscopy (XPS) characterization, and scanning electron microscopy (SEM) test. These results showed that the interaction promoted the reduction of O2 on the cathodic chalcopyrite surface and accelerated the generation of Fe(OH)3, which was not conducive to collector adsorption; hence, the flotation recovery decreased by 10–16%. On the other hand, galvanic interaction accelerated the oxidation of S on the anodic monoclinic pyrrhotite surface to S0 or SO42− and produced a large amount of H+, thus preventing the formation of Fe(OH)3. Meanwhile, the Cu2+ eluted from chalcopyrite surface activated monoclinic pyrrhotite; hence, the flotation recovery increased by 3–10%. Galvanic interaction reduced the floatability difference between the two minerals, and the separation difficulty was significantly increased. Even with an increase in the amount of lime, the separation could not be improved.


2021 ◽  
Vol 270 ◽  
pp. 01011
Author(s):  
Tereza Smejkalová ◽  
Ştefan Ţălu ◽  
Rashid Dallaev ◽  
Klára Částková ◽  
Dinara Sobola ◽  
...  

Polyvinylidene fluoride (PVDF) is one of the most promising electroactive polymers; it exhibits excellent electroactive behaviours, good biocompatibility, excellent chemical resistance, and thermal stability, rendering it an attractive material for biomedical, electronic, environmental and energy harvesting applications. This work aims to further improve its properties by the inclusion of powders of piezoactive materials. Polyvinylidene fluoride was formed by electrospinning into fibres with a thickness of 1.5-0.3 µm and then examined in a scanning electron microscope. The work offers a description of the current procedure in the preparation of samples and their modification for examination in a scanning electron microscope, characterizes the individual components of doped fibres and deals with specific instruments used for various analytical methods. The work contains a theoretical introduction to the analytical methods to which the samples will be further subjected, such as energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS). The obtained excellent properties of doped PVDF could be used in the design of sensors.


Sign in / Sign up

Export Citation Format

Share Document