Evaluating new processes and concepts for energy and resource recovery from municipal wastewater with life cycle assessment

2015 ◽  
Vol 73 (5) ◽  
pp. 1074-1080 ◽  
Author(s):  
C. Remy ◽  
M. Boulestreau ◽  
J. Warneke ◽  
P. Jossa ◽  
C. Kabbe ◽  
...  

Energy and resource recovery from municipal wastewater is a pre-requisite for an efficient and sustainable water management in cities of the future. However, a sound evaluation of available processes and pathways is required to identify opportunities and short-comings of the different options and reveal synergies and potentials for optimization. For evaluating environmental impacts in a holistic view, the tool of life cycle assessment (LCA, ISO 14040/44) is suitable to characterize and quantify the direct and indirect effects of new processes and concepts. This paper gives an overview of four new processes and concepts for upgrading existing wastewater treatment plants towards energy positive and resource efficient wastewater treatment, based upon an evaluation of their environmental impacts with LCA using data from pilot and full-scale assessments of the considered processes.

Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 356
Author(s):  
Paulina Szulc ◽  
Jędrzej Kasprzak ◽  
Zbysław Dymaczewski ◽  
Przemysław Kurczewski

The efficient and timely removal of organic matter and nutrients from water used in normal municipal functions is considered to be the main task of wastewater treatment plants (WWTPs). Therefore, these facilities are considered to be essential units that are required to avoid pollution of the water environment and decrease the possibility of triggering eutrophication. Even though these benefits are undeniable, they remain at odds with the high energy demand of wastewater treatment and sludge processes. As a consequence, WWTPs have various environmental impacts, which can be estimated and categorized using Life Cycle Assessment (LCA) analysis. In this study, a municipal WWTP based in Poznań, Poland, was examined using the method defined in ISO 14040. ReCiPe Endpoint and Midpoint (v1.11), in a hierarchical approach, were used to evaluate the environmental impacts regarding 18 different categories. All calculations were conducted using a detailed database from 2019, which describes each chosen facility. It was found that the energy component, related to the wastewater treatment process demand and electricity production, is the main determinant of the sum of the environmental impact indicators in light of the modelled energy mix. Therefore, it determines the entire process as an environmentally friendly activity.


Environments ◽  
2020 ◽  
Vol 7 (5) ◽  
pp. 36
Author(s):  
Ludwig Paul B. Cabling ◽  
Yumi Kobayashi ◽  
Evan G. R. Davies ◽  
Nicholas J. Ashbolt ◽  
Yang Liu

Municipal sewage contains significant embedded resources in the form of chemical and thermal energy. Recent developments in sustainable technology have pushed for the integration of resource recovery from household wastewater to achieve net zero energy consumption and carbon-neutral communities. Sewage heat recovery and fit-for-purpose water reuse are options to optimize the resource recovery potential of municipal wastewater. This study presents a comparative life cycle assessment (LCA) focused on global warming potential (GWP), eutrophication potential (EUP), and human health carcinogenic potential (HHCP) of an integrated sewage heat recovery and water reuse system for a hypothetical community of 30,000 people. Conventional space and water heating components generally demonstrated the highest GWP contribution between the different system components evaluated. Sewage-heat-recovery-based district heating offered better environmental performance overall. Lower impact contributions were demonstrated by scenarios with a membrane bioreactor (MBR) and chlorination prior to water reuse applications compared to scenarios that use more traditional water and wastewater treatment technologies and discharge. The LCA findings show that integrating MBR wastewater treatment and water reuse into a district heating schema could provide additional environmental savings at a community scale.


2018 ◽  
Vol 29 (5) ◽  
pp. 826-841 ◽  
Author(s):  
Binita Shah ◽  
Seema Unnikrishnan

Purpose India is a developing economy along with an increasing population estimated to be the largest populated country in about seven years. Simultaneously, its power consumption is projected to increase more than double by 2020. Currently, the dependence on coal is relatively high, making it the largest global greenhouse gas emitting sector which is a matter of great concern. The purpose of this paper is to evaluate the environmental impacts of the natural gas electricity generation in India and propose a model using a life cycle assessment (LCA) approach. Design/methodology/approach LCA is used as a tool to evaluate the environmental impact of the natural gas combined cycle (NGCC) power plant, as it adopts a holistic approach towards the whole process. The LCA methodology used in this study follows the ISO 14040 and 14044 standards (ISO 14040: 2009; ISO 14044: 2009). A questionnaire was designed for data collection and validated by expert review primary data for the annual environmental emission was collected by personally visiting the power plant. The study follows a cradle to gate assessment using the CML (2001) methodology. Findings The analysis reveals that the main impacts were during the process of combustion. The Global warming potential is approximately 0.50 kg CO2 equivalents per kWh of electricity generation from this gas-based power plant. These results can be used by stakeholders, experts and members who are authorised to probe positive initiative for the reduction of environmental impacts from the power generation sector. Practical implications Considering the pace of growth of economic development of India, it is the need of the hour to emphasise on the patterns of sustainable energy generation which is an important subject to be addressed considering India’s ratification to the Paris Climate Change Agreement. This paper analyzes the environmental impacts of gas-based electricity generation. Originality/value Presenting this case study is an opportunity to get a glimpse of the challenges associated with gas-based electricity generation in India. It gives a direction and helps us to better understand the right spot which require efforts for the improvement of sustainable energy generation processes, by taking appropriate measures for emission reduction. This paper also proposes a model for gas-based electricity generation in India. It has been developed following an LCA approach. As far as we aware, this is the first study which proposes an LCA model for gas-based electricity generation in India. The model is developed in line with the LCA methodology and focusses on the impact categories specific for gas-based electricity generation.


Sign in / Sign up

Export Citation Format

Share Document