scholarly journals Abatement of organic pollutants using fly ash based adsorbents

2017 ◽  
Vol 76 (10) ◽  
pp. 2580-2592 ◽  
Author(s):  
Kayode Adesina Adegoke ◽  
Rhoda Oyeladun Oyewole ◽  
Bukola Morenike Lasisi ◽  
Olugbenga Solomon Bello

Abstract The presence of organic pollutants in the environment is of major concern because of their toxicity, bio-accumulating tendency, threat to human life and the environment. It is a well-known fact that, these pollutants can damage nerves, liver, and bones and could also block functional groups of essential enzymes. Conventional methods for removing dissolved pollutants include chemical precipitation, chemical oxidation or reduction, filtration, ion-exchange, electrochemical treatment, application of membrane technology, evaporation recovery and biological treatment. Although all the pollutant treatment techniques can be employed, they have their inherent advantages and limitations. Among all these methods, adsorption process is considered better than other methods because of convenience, easy operation and simplicity of design. A fundamentally important characteristic of good adsorbents is their high porosity and consequent larger surface area with more specific adsorption sites. This paper presents a review of adsorption of different pollutants using activated carbon prepared from fly ash sources and the attendant environmental implications. Also, the ways of overcoming barriers to fly ash utilization together with regeneration studies are also discussed.

Author(s):  
A. Saravanan ◽  
Uvaraja Uvaraja ◽  
Nishanth Nishanth ◽  
Soundarajan Krishnan

Heavy metals are ubiquitous environmental contaminants in industrialized societies. The presence of heavy metals in the environment is of major concern because of their toxicity, bio-accumulating tendency, threat to human life and the environment. Traditional methods have been used to remove heavy metals from effluent include chemical precipitation, chemical oxidation/reduction, ion exchange, electrochemical treatment, evaporation and filtration. Many of these methods are ineffective; resulting in low levels of metal ion removal and can also be economically inefficient. Biomass of brown marine macro algae is a renewable biological resource, which is available in large quantities and can form a good base for the development of biosorbent material. The work considered the parameters of the effluents and the experimental column model for the metal adsorption. Among the experimental model Thomas model fitted the column biosorption data well.


Author(s):  
Amin Mojiri ◽  
Siti Fatihah Binti Ramli ◽  
Wan Izatul Saadiah Binti Wan Kamar

Leachate is created while water penetrates through the waste in a landfill, carrying some forms of pollutants. The goal of this chapter is the introduction to leachate treatment. Biological, physical, and chemical treatments of leachate are the most common methods. The biological techniques in leachate treatment are studied. The physical-chemical ways for landfill leachate treatment like chemical precipitation, chemical oxidation, coagulation–flocculation, membrane filtration, ion exchange, adsorption and electrochemical treatment are studied. The landfill leachate properties, technical applicability and constraints, effluent discharge alternatives, cost-effectiveness, regulatory requirements and environmental impact are important factors for selection of the most suitable treatment technique for landfill leachate treatment.


2020 ◽  
pp. 157-176
Author(s):  
Amin Mojiri ◽  
Siti Fatihah Binti Ramli ◽  
Wan Izatul Saadiah Binti Wan Kamar

Leachate is created while water penetrates through the waste in a landfill, carrying some forms of pollutants. The goal of this chapter is the introduction to leachate treatment. Biological, physical, and chemical treatments of leachate are the most common methods. The biological techniques in leachate treatment are studied. The physical-chemical ways for landfill leachate treatment like chemical precipitation, chemical oxidation, coagulation–flocculation, membrane filtration, ion exchange, adsorption and electrochemical treatment are studied. The landfill leachate properties, technical applicability and constraints, effluent discharge alternatives, cost-effectiveness, regulatory requirements and environmental impact are important factors for selection of the most suitable treatment technique for landfill leachate treatment.


2017 ◽  
Vol 14 (1) ◽  
pp. 15
Author(s):  
M.B. Nicodemus Ujih ◽  
Mohammad Isa Mohamadin ◽  
Milla-Armila Asli ◽  
Bebe Norlita Mohammed

Heavy metal ions contamination has become more serious which is caused by the releasing of toxic water from industrial area and landfill that are very harmful to all living organism especially human and can even cause death if contaminated in small amount of heavy metal concentration. Currently, peoples are using classic method namely electrochemical treatment, chemical oxidation/reduction, chemical precipitation and reverse osmosis to eliminate the metal ions from toxic water. Unfortunately, these methods are costly and not environmentally friendly as compared to bioadsorption method, where agricultural waste is used as biosorbent to remove heavy metals. Two types of agricultural waste used in this research namely oil palm mesocarp fiber (Elaesis guineensis sp.) (OPMF) and mangrove bark (Rhizophora apiculate sp.) (MB) biomass. Through chemical treatment, the removal efficiency was found to improve. The removal efficiency is examined based on four specification namely dosage, of biosorbent to adsorb four types of metals ion explicitly nickel, lead, copper, and chromium. The research has found that the removal efficiency of MB was lower than OPMF; whereas, the multiple metals ions removal efficiency decreased in the order of Pb2+ > Cu2+ > Ni2+ > Cr2+.


Author(s):  
Huchuan Yan ◽  
Cui Lai ◽  
Dongbo Wang ◽  
Shiyu Liu ◽  
Xiaopei Li ◽  
...  

Refractory organic pollutants in wastewater have the characteristics of persistence and toxicity, which seriously threaten the health and safety of humans and other organisms. Many researchers have committed to developing...


2020 ◽  
Vol 18 (1) ◽  
pp. 936-942
Author(s):  
Ardhmeri Alija ◽  
Drinisa Gashi ◽  
Rilinda Plakaj ◽  
Admir Omaj ◽  
Veprim Thaçi ◽  
...  

AbstractThis study is focused on the adsorption of hexavalent chromium ions Cr(vi) using graphene oxide (GO). The GO was prepared by chemical oxidation (Hummers method) of graphite particles. The synthesized GO adsorbent was characterized by Fourier transform infrared spectroscopy and UV-Vis spectroscopy. It was used for the adsorption of Cr(vi) ions. The theoretical calculations based on density functional theory and Monte Carlo calculations were used to explore the preferable adsorption site, interaction type, and adsorption energy of GO toward the Cr(vi) ions. Moreover, the most stable adsorption sites were used to calculate and plot noncovalent interactions. The obtained results are important as they give molecular insights regarding the nature of the interaction between GO surface and the adsorbent Cr(vi) ions. The found adsorption energy of −143.80 kcal/mol is indicative of the high adsorptive tendency of this material. The adsorption capacity value of GO toward these ions is q = 240.361 mg/g.


Processes ◽  
2018 ◽  
Vol 6 (10) ◽  
pp. 173 ◽  
Author(s):  
Fang Liu ◽  
Han-Qiao Liu ◽  
Guo-Xia Wei ◽  
Rui Zhang ◽  
Tong-Tong Zeng ◽  
...  

Medical waste incinerator fly ash (MWIFA) is quite different from municipal solid waste incinerator fly ash (MSWIFA) due to its special characteristics of high levels of chlorines, dioxins, carbon constituents, and heavy metals, which may cause irreversible harm to environment and human beings if managed improperly. However, treatment of MWIFA has rarely been specifically mentioned. In this review, various treatment techniques for MSWIFA, and their merits, demerits, applicability, and limitations for MWIFA are reviewed. Natural properties of MWIFA including the high contents of chlorine and carbonaceous matter that might affect the treatment effects of MWIFA are also depicted. Finally, several commendatory and feasible technologies such as roasting, residual carbon melting, the mechanochemical technique, flotation, and microwave treatment are recommended after an overall consideration of the special characteristics of MWIFA, balancing environmental, technological, economical information.


Author(s):  
Kashi Banerjee ◽  
P. Y. Horng ◽  
Paul N. Cheremisinoff ◽  
M. S. Sheih ◽  
S. L. Cheng
Keyword(s):  
Fly Ash ◽  

Sign in / Sign up

Export Citation Format

Share Document