Microbiome network analysis of co-occurrence patterns in anaerobic co-digestion of sewage sludge and food waste

2019 ◽  
Vol 79 (10) ◽  
pp. 1956-1965 ◽  
Author(s):  
Esteban Orellana ◽  
Carol Davies-Sala ◽  
Leandro D. Guerrero ◽  
Ignacio Vardé ◽  
Melisa Altina ◽  
...  

Abstract Addition of food waste (FW) as a co-substrate in anaerobic digesters of wastewater treatment plants is a desirable strategy towards achievement of the potential of wastewater treatment plants to become energy-neutral, diverting at the same time organic waste from landfills. Because substrate type is a driver of variations in phylogenetic structure of digester microbiomes, it is critical to understand how microbial communities respond to changes in substrate composition and concentration. In this work, high throughput sequencing was used to monitor the dynamics of microbiome changes in four parallel laboratory-scale anaerobic digesters treating sewage sludge during acclimation to an increasing amount of food waste. A co-occurrence network was constructed using data from 49 metagenomes sampled over the 161 days of the digesters' operation. More than half of the nodes in the network were clustered in two major modules, i.e. groups of highly interconnected taxa that had much fewer connections with taxa outside the group. The dynamics of co-occurrence networks evidenced shifts that occurred within microbial communities due to the addition of food waste in the co-digestion process. A diverse and reproducible group of hydrolytic and fermentative bacteria, syntrophic bacteria and methanogenic archaea appeared to grow in a concerted fashion to allow stable performance of anaerobic co-digestion at high FW.

2020 ◽  
Vol 10 (8) ◽  
pp. 2921 ◽  
Author(s):  
Mohsen Parchami ◽  
Steven Wainaina ◽  
Amir Mahboubi ◽  
David I’Ons ◽  
Mohammad J. Taherzadeh

The significant amount of excess sewage sludge (ESS) generated on a daily basis by wastewater treatment plants (WWTPs) is mainly subjected to biogas production, as for other organic waste streams such as food waste slurry (FWS). However, these organic wastes can be further valorized by production of volatile fatty acids (VFAs) that have various applications such as the application as an external carbon source for the denitrification stage at a WWTP. In this study, an immersed membrane bioreactor set-up was proposed for the stable production and in situ recovery of clarified VFAs from ESS and FWS. The VFAs yields from ESS and FWS reached 0.38 and 0.34 gVFA/gVSadded, respectively, during a three-month operation period without pH control. The average flux during the stable VFAs production phase with the ESS was 5.53 L/m2/h while 16.18 L/m2/h was attained with FWS. Moreover, minimal flux deterioration was observed even during operation at maximum suspended solids concentration of 32 g/L, implying that the membrane bioreactors could potentially guarantee the required volumetric productivities. In addition, the techno-economic assessment of retrofitting the membrane-assisted VFAs production process in an actual WWTP estimated savings of up to 140 €/h for replacing 300 kg/h of methanol with VFAs.


2020 ◽  
Author(s):  
Munawwar Ali Khan ◽  
Shams Tabrez Khan ◽  
Milred Cedric Sequeira ◽  
Sultan Mohammad Faheem

Abstract Understanding the microbial communities in anaerobic digesters is important for better regulation, operation, and sustainable management of the sludge produced at various stages of wastewater treatment processes. Microbial communities in the anaerobic digester of the gulf region where the climatic conditions and other factors may impact the incoming feed have not been documented. Archaeal and Bacterial communities of three full-scale anaerobic digesters, namely AD1, AD3 and AD5 were analyzed by Illumina sequencing of 16S rRNA genes. Among bacteria, the most abundant genus was fermentative bacteria Acetobacteroides (Blvii28). Other predominant bacterial genera in the digesters included thermophilic bacteria (Fervidobacterium and Coprothermobacter) and halophilic bacteria like Haloterrigena and Sediminibacter. This can be correlated with the climatic condition in Dubai, where the bacteria in the original feed may be thermophilic or halophilic as much of the water used in the country is desalinated seawater. Propionic acid-producing bacteria like Paludibacter and propionate oxidizing bacteria like W5 were also dominating group and were found in all the digesters. The predominant Archaea include mainly the members of phylum Euryarchaeota and Crenarchaeota belonging to genus Methanocorpusculum, Metallosphaera, Methanocella, and Methanococcus. The highest population of Methanocorpusculum (more than 50% of total Archaea) hydrogenotrophic archaea matches with the high population of Acetobacteroides (Blvii28) and Fervidobacterium bacteria which ferments the organic substrates to acetate and H2. Coprothermobacter, which is known to improve protein degradation by establishing a syntrophy with hydrogenotrophic archaea, was also one of the dominant genera in the digesters. This study, for the first time, contributes to an in-depth understanding of the phylogenetic diversity of a microbial community of three full-scale anaerobic digesters of a municipal wastewater treatment plant in Dubai, UAE.


2021 ◽  
Author(s):  
Yu Xia ◽  
Na Li ◽  
Yiyun Chen ◽  
Weijia Li ◽  
Xuwen He ◽  
...  

Abstract Understanding functions and co-occurrence patterns of microbial communities in various ecosystems enriches the knowledge on ecosystem characteristics and microbial ecology. However, such analyses have rarely been reported. Herein, functions and inter-taxa correlations of microbial communities in a set of natural environments (farmland (SA), forest soil (SB) and Caspian Sea sediments (CSS)) and engineered ecosystems (wastewater treatment plants (FW, WA and WB) and anaerobic digesters (AD)) were studied based on FAPROTAX and network analyses, respectively, by a collection of 115 samples from seven published 16S rRNA gene datasets generated by high-throughput sequencing. The results show that chemoheterotrophy related populations were the most abundant in almost all the communities. Their relative abundances (RAs) in the AD systems were the highest (43.7%±4.2%), followed by those of the soil environments (40.2%±1.9% in SA and 36.4%±2.0% in SB). For each ecosystem, the indicative community and overall community showed differentiations in several function categories. For example, the SA and SB indicative communities showed higher RAs in aerobic chemoheterotrophy, the CSS indicative community showed higher RAs in sulfate respiration, the AD indicative community showed higher RAs in fermentation, and the WB indicative community included higher RAs of predatory/exoparasitic bacteria. Three molecular ecological networks of the communities from the AD, WB and SB datasets were constructed, respectively. The WB network showed the highest proportion of negative correlations (70.4%), possibly attributed to the environmental pressure which aggravated microbial competition. The positively correlated taxa showed lower phylogenetic distances than the negatively correlated taxa on average in each network.


2008 ◽  
Vol 3 (1) ◽  
Author(s):  
Luchien Luning ◽  
Paul Roeleveld ◽  
Victor W.M. Claessen

In recent years new technologies have been developed to improve the biological degradation of sewage sludge by anaerobic digestion. The paper describes the results of a demonstration of ultrasonic disintegration on the Dutch Wastewater Treatment Plant (WWTP) Land van Cuijk. The effect on the degradation of organic matter is presented, together with the effect on the dewatering characteristics. Recommendations are presented for establishing research conditions in which the effect of sludge disintegration can be determined in a more direct way that is less sensitive to changing conditions in the operation of the WWTP. These recommendations have been implemented in the ongoing research in the Netherlands supported by the National Institute for wastewater research (STOWA).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jorge Domínguez ◽  
Manuel Aira ◽  
Keith A. Crandall ◽  
Marcos Pérez-Losada

AbstractWastewater treatment plants produce hundreds of million tons of sewage sludge every year all over the world. Vermicomposting is well established worldwide and has been successful at processing sewage sludge, which can contribute to alleviate the severe environmental problems caused by its disposal. Here, we utilized 16S and ITS rRNA high-throughput sequencing to characterize bacterial and fungal community composition and structure during the gut- and cast-associated processes (GAP and CAP, respectively) of vermicomposting of sewage sludge. Bacterial and fungal communities of earthworm casts were mainly composed of microbial taxa not found in the sewage sludge; thus most of the bacterial (96%) and fungal (91%) taxa in the sewage sludge were eliminated during vermicomposting, mainly through the GAP. Upon completion of GAP and during CAP, modified microbial communities undergo a succession process leading to more diverse microbiotas than those found in sewage sludge. Consequently, bacterial and fungal community composition changed significantly during vermicomposting. Vermicomposting of sewage resulted in a stable and rich microbial community with potential biostimulant properties that may aid plant growth. Our results support the use of vermicompost derived from sewage sludge for sustainable agricultural practices, if heavy metals or other pollutants are under legislation limits or adequately treated.


Chemosphere ◽  
2007 ◽  
Vol 66 (2) ◽  
pp. 353-361 ◽  
Author(s):  
Jiayin Dai ◽  
Muqi Xu ◽  
Jiping Chen ◽  
Xiangping Yang ◽  
Zhenshan Ke

2003 ◽  
Vol 33 (3) ◽  
pp. 529-542
Author(s):  
Olfat El-Sebaie ◽  
Ahmed Hussein ◽  
Mohamed Ramadan ◽  
Magda Abd El-Atty ◽  
Helaly Helaly

Sign in / Sign up

Export Citation Format

Share Document