scholarly journals Putative functions and co-occurrence patterns of the microbial communities in natural and engineered ecosystems

Author(s):  
Yu Xia ◽  
Na Li ◽  
Yiyun Chen ◽  
Weijia Li ◽  
Xuwen He ◽  
...  

Abstract Understanding functions and co-occurrence patterns of microbial communities in various ecosystems enriches the knowledge on ecosystem characteristics and microbial ecology. However, such analyses have rarely been reported. Herein, functions and inter-taxa correlations of microbial communities in a set of natural environments (farmland (SA), forest soil (SB) and Caspian Sea sediments (CSS)) and engineered ecosystems (wastewater treatment plants (FW, WA and WB) and anaerobic digesters (AD)) were studied based on FAPROTAX and network analyses, respectively, by a collection of 115 samples from seven published 16S rRNA gene datasets generated by high-throughput sequencing. The results show that chemoheterotrophy related populations were the most abundant in almost all the communities. Their relative abundances (RAs) in the AD systems were the highest (43.7%±4.2%), followed by those of the soil environments (40.2%±1.9% in SA and 36.4%±2.0% in SB). For each ecosystem, the indicative community and overall community showed differentiations in several function categories. For example, the SA and SB indicative communities showed higher RAs in aerobic chemoheterotrophy, the CSS indicative community showed higher RAs in sulfate respiration, the AD indicative community showed higher RAs in fermentation, and the WB indicative community included higher RAs of predatory/exoparasitic bacteria. Three molecular ecological networks of the communities from the AD, WB and SB datasets were constructed, respectively. The WB network showed the highest proportion of negative correlations (70.4%), possibly attributed to the environmental pressure which aggravated microbial competition. The positively correlated taxa showed lower phylogenetic distances than the negatively correlated taxa on average in each network.


2019 ◽  
Vol 79 (10) ◽  
pp. 1956-1965 ◽  
Author(s):  
Esteban Orellana ◽  
Carol Davies-Sala ◽  
Leandro D. Guerrero ◽  
Ignacio Vardé ◽  
Melisa Altina ◽  
...  

Abstract Addition of food waste (FW) as a co-substrate in anaerobic digesters of wastewater treatment plants is a desirable strategy towards achievement of the potential of wastewater treatment plants to become energy-neutral, diverting at the same time organic waste from landfills. Because substrate type is a driver of variations in phylogenetic structure of digester microbiomes, it is critical to understand how microbial communities respond to changes in substrate composition and concentration. In this work, high throughput sequencing was used to monitor the dynamics of microbiome changes in four parallel laboratory-scale anaerobic digesters treating sewage sludge during acclimation to an increasing amount of food waste. A co-occurrence network was constructed using data from 49 metagenomes sampled over the 161 days of the digesters' operation. More than half of the nodes in the network were clustered in two major modules, i.e. groups of highly interconnected taxa that had much fewer connections with taxa outside the group. The dynamics of co-occurrence networks evidenced shifts that occurred within microbial communities due to the addition of food waste in the co-digestion process. A diverse and reproducible group of hydrolytic and fermentative bacteria, syntrophic bacteria and methanogenic archaea appeared to grow in a concerted fashion to allow stable performance of anaerobic co-digestion at high FW.



2019 ◽  
Author(s):  
Huan Li ◽  
Lu Yuan ◽  
Ruina Liu ◽  
Siruo Zhang ◽  
E Yang ◽  
...  

Abstract Background The human rectum flora consists of a huge variety of bacteria and the association between individuals and their rectum bacterial community begins presently after birth and continues the whole lifetime. Once the body dies, the inherent microbes begin to break down from the inside and play a key role thereafter. Results The aim of this study was to investigate the probable shift of the rectum flora at different time intervals up to 15 days after death and to characterize the contribution for of this shift to estimate the time of death. The rectum of rats was wiped with a sterile cotton swab and the samples were proceeded for DNA extraction, PCR amplification of the 16S rRNA gene with the V3+V4 variable regions, and high throughput sequencing carried out on IonS5TMXL platform. The results were analyzed for intra-group and inter-group diversity, similarity and difference at different time points. At phylum level, Proteobacteria and Firmicutes showed major shifts, checked at 11 different intervals and emerged in the most of postmortem intervals. At the genus level, Enterococcus appeared in all groups except alive samples, Lactobacillus and Proteus appeared in most time points, and the latter showed an increasing trend after 3 days postmortem samples. At the species level, Enterococcus_faecalis and Proteus_mirabilis existed in most postmortem intervals, and the former had a downward trend after day 5 postmortem, while the latter had an upward trend. Corynebacterium_amycolatum , Entero_isolate_group_2 , Bacteroides_uniformis , Enterococcus_faecalis , Streptococcus_gallolyticus_subsp_macedonics , Clostridium_sporogenes were more abundant in 0-hour, day 1, 3, 5, 7, 13 postmortem intervals, respectively, while Proteus_mirabilis and Vagococcus_lutrae were abundant in day 15 postmortem. In addition, functional capacity analysis of Membrane_Transport, Amino_Acid_Metabolism, Nucleotide_Metabolism and Energy_Metabolism showed significant differences between alive and almost all other time points after death ( P <0.05). Conclusions All in all, bacteria at different levels (phylum, genera, species) showed different characteristic during the process of decomposition and possessed entirely different relative abundance and the structure of bacterial community in each time point shifted obviously, which suggested that the specific bacteria might imply the specific postmortem interval during decomposition.



2018 ◽  
Author(s):  
Chenhao Li ◽  
Lisa Tucker-Kellogg ◽  
Niranjan Nagarajan

AbstractA growing body of literature points to the important roles that different microbial communities play in diverse natural environments and the human body. The dynamics of these communities is driven by a range of microbial interactions from symbiosis to predator-prey relationships, the majority of which are poorly understood, making it hard to predict the response of the community to different perturbations. With the increasing availability of high-throughput sequencing based community composition data, it is now conceivable to directly learn models that explicitly define microbial interactions and explain community dynamics. The applicability of these approaches is however affected by several experimental limitations, particularly the compositional nature of sequencing data. We present a new computational approach (BEEM) that addresses this key limitation in the inference of generalised Lotka-Volterra models (gLVMs) by coupling biomass estimation and model inference in an expectation maximization like algorithm (BEEM). Surprisingly, BEEM outperforms state-of-the-art methods for inferring gLVMs, while simultaneously eliminating the need for additional experimental biomass data as input. BEEM’s application to previously inaccessible public datasets (due to the lack of biomass data) allowed us for the first time to analyse microbial communities in the human gut on a per individual basis, revealing personalised dynamics and keystone species.



2021 ◽  
Vol 12 ◽  
Author(s):  
Qi Yan ◽  
Jianming Deng ◽  
Feng Wang ◽  
Yongqin Liu ◽  
Keshao Liu

Microbial communities normally comprise a few core species and large numbers of satellite species. These two sub-communities have different ecological and functional roles in natural environments, but knowledge on the assembly processes and co-occurrence patterns of the core and satellite species in Tibetan lakes is still sparse. Here, we investigated the ecological processes and co-occurrence relationships of the core and satellite bacterial sub-communities in the Tibetan lakes via 454 sequencing of 16S rRNA gene. Our studies indicated that the core and satellite bacterial sub-communities have similar dominant phyla (Proteobacteria, Bacteroidetes, and Actinobacteria). But the core sub-communities were less diverse and exhibited a stronger distance-decay relationship than the satellite sub-communities. In addition, topological properties of nodes in the network demonstrated that the core sub-communities had more complex and stable co-occurrence associations and were primarily driven by stochastic processes (58.19%). By contrast, the satellite sub-communities were mainly governed by deterministic processes (62.17%). Overall, this study demonstrated the differences in the core and satellite sub-community assembly and network stability, suggesting the importance of considering species traits to understand the biogeographic distribution of bacterial communities in high-altitude lakes.



2015 ◽  
Vol 12 (13) ◽  
pp. 10233-10269 ◽  
Author(s):  
J. Comte ◽  
C. Lovejoy ◽  
S. Crevecoeur ◽  
W. F. Vincent

Abstract. Permafrost thaw ponds and lakes are widespread across the northern landscape and may play a central role in global biogeochemical cycles, yet knowledge about their microbial ecology is limited. We sampled a set of thaw ponds and lakes as well as shallow rock-basin lakes that are located in distinct valleys along a North–South permafrost degradation gradient. We applied high-throughput sequencing of the 16S rRNA gene to determine co-occurrence patterns among bacterial taxa, and then analyzed these results relative to environmental variables to identify factors controlling bacterial community structure. Network analysis was applied to identify possible ecological linkages among the bacterial taxa and with abiotic and biotic variables. The results showed an overall high level of shared taxa among bacterial communities within each valley, however the bacterial co-occurrence patterns were non-random, with evidence of habitat preferences. There were taxonomic differences in bacterial assemblages among the different valleys that were statistically related to dissolved organic carbon concentration, conductivity and phytoplankton biomass. Co-occurrence networks revealed complex interdependencies within the bacterioplankton communities and showed contrasting linkages to environmental conditions among the main bacterial phyla. The thaw pond networks were composed of a limited number of highly connected taxa. This "small world network" property would render the communities more robust to environmental change but vulnerable to the loss of microbial keystone species.



2017 ◽  
Author(s):  
Rasmus H. Kirkegaard ◽  
Simon J. McIlroy ◽  
Jannie M. Kristensen ◽  
Marta Nierychlo ◽  
Søren M. Karst ◽  
...  

AbstractAnaerobic digestion is widely applied to treat organic waste at wastewater treatment plants. Characterisation of the underlying microbiology represents a source of information to develop strategies for improved operation. To this end, we investigated the microbial community composition of thirty-two full-scale digesters over a six-year period using 16S rRNA gene amplicon sequencing. Sampling of the sludge fed into these systems revealed that several of the most abundant populations were likely inactive and immigrating with the influent. This observation indicates that a failure to consider immigration will interfere with correlation analysis and give an inaccurate picture of the active microbial community. Furthermore, several abundant OTUs could not be classified to genus level with commonly applied taxonomies, making inference of their function unreliable. As such, the existing MiDAS taxonomy was updated to include these abundant phylotypes. The communities of individual plants surveyed were remarkably similar – with only 300 OTUs representing 80% of the total reads across all plants, and 15% of these identified as likely inactive immigrating microbes. By identifying the abundant and active taxa in anaerobic digestion, this study paves the way for targeted characterisation of the process important organisms towards an in-depth understanding of the microbial ecology of these biotechnologically important systems.



2021 ◽  
Author(s):  
Xinyu Cui ◽  
Huan He ◽  
Fengxiao Zhu ◽  
Xiaobo Liu ◽  
You Ma ◽  
...  

Abstract Soil microorganisms play a vital role in biogeochemical processes and nutrient turnover in agricultural ecosystems. However, the information on how the structure and co-occurrence patterns of microbial communities respond to the change of planting methods is still limited. In this study, a total of 34 soil samples were collected from 17 different fields of two planting types (wheat and orchards) along the Taige Canal in Yangtze River Delta. The distribution and diversity of bacterial and fungal communities in soil were determined using amplicon sequencing targeting the 16S rRNA gene and ITS gene, respectively. The dominated bacteria were Proteobacteria, Acidobacteriota, Actinobacteriota, Chloroflexi, Bacteroidota, and Firmicutes. The relative abundance of Actinobacteriota and Firmicutes was higher in the orchards, while Chloroflexi and Nitrospirota were more abundant in wheat fields. Ascomycota, Mortierellomycota, and Basidiomycota were the predominant fungi in both types of soils. The diversity of bacterial and fungal communities was greater in the wheat fields than in the orchards. The statistical analyses showed that pH was the main factor shaping the community structure. Moreover, high co-occurrence patterns of bacteria and fungi were confirmed in both wheat fields and orchards. Network analyses showed that both the wheat fields and orchards occurred modular structure, which mainly contained nodes of Acidobacteriota, Chloroflexi, Gemmatimonadota, Nitrospirota and Ascomycota. In summary, our work showed the co-occurrence network and the convergence/divergence of microbial community structure in wheat fields and orchards, giving a comprehensive understanding of the microbe-microbe interaction during planting methods changes.



2016 ◽  
Vol 13 (1) ◽  
pp. 175-190 ◽  
Author(s):  
J. Comte ◽  
C. Lovejoy ◽  
S. Crevecoeur ◽  
W. F. Vincent

Abstract. Permafrost thaw ponds and lakes are widespread across the northern landscape and may play a central role in global biogeochemical cycles, yet knowledge about their microbial ecology is limited. We sampled a set of thaw ponds and lakes as well as shallow rock-basin lakes that are located in distinct valleys along a north–south permafrost degradation gradient. We applied high-throughput sequencing of the 16S rRNA gene to determine co-occurrence patterns among bacterial taxa (operational taxonomic units, OTUs), and then analyzed these results relative to environmental variables to identify variables controlling bacterial community structure. Network analysis was applied to identify possible ecological linkages among the bacterial taxa and with abiotic and biotic variables. The results showed an overall high level of shared taxa among bacterial communities within each valley; however, the bacterial co-occurrence patterns were non-random, with evidence of habitat preferences. There were taxonomic differences in bacterial assemblages among the different valleys that were statistically related to dissolved organic carbon concentration, conductivity and phytoplankton biomass. Co-occurrence networks revealed complex interdependencies within the bacterioplankton communities and showed contrasting linkages to environmental conditions among the main bacterial phyla. The thaw pond networks were composed of a limited number of highly connected taxa. This “small world network” property would render the communities more robust to environmental change but vulnerable to the loss of microbial “keystone species”. These highly connected nodes (OTUs) in the network were not merely the numerically dominant taxa, and their loss would alter the organization of microbial consortia and ultimately the food web structure and functioning of these aquatic ecosystems.



Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Ya Wang ◽  
Yan Yan ◽  
Kelsey N. Thompson ◽  
Sena Bae ◽  
Emma K. Accorsi ◽  
...  

Abstract Background High-throughput sequencing provides a powerful window into the structural and functional profiling of microbial communities, but it is unable to characterize only the viable portion of microbial communities at scale. There is as yet not one best solution to this problem. Previous studies have established viability assessments using propidium monoazide (PMA) treatment coupled with downstream molecular profiling (e.g., qPCR or sequencing). While these studies have met with moderate success, most of them focused on the resulting “viable” communities without systematic evaluations of the technique. Here, we present our work to rigorously benchmark “PMA-seq” (PMA treatment followed by 16S rRNA gene amplicon sequencing) for viability assessment in synthetic and realistic microbial communities. Results PMA-seq was able to successfully reconstruct simple synthetic communities comprising viable/heat-killed Escherichia coli and Streptococcus sanguinis. However, in realistically complex communities (computer screens, computer mice, soil, and human saliva) with E. coli spike-in controls, PMA-seq did not accurately quantify viability (even relative to variability in amplicon sequencing), with its performance largely affected by community properties such as initial biomass, sample types, and compositional diversity. We then applied this technique to environmental swabs from the Boston subway system. Several taxa differed significantly after PMA treatment, while not all microorganisms responded consistently. To elucidate the “PMA-responsive” microbes, we compared our results with previous PMA-based studies and found that PMA responsiveness varied widely when microbes were sourced from different ecosystems but were reproducible within similar environments across studies. Conclusions This study provides a comprehensive evaluation of PMA-seq exploring its quantitative potential in synthetic and complex microbial communities, where the technique was effective for semi-quantitative purposes in simple synthetic communities but provided only qualitative assessments in realistically complex community samples.



Sign in / Sign up

Export Citation Format

Share Document