scholarly journals Optimization of electrocoagulation process parameters for enhancing phosphate removal in a biofilm-electrocoagulation system

Author(s):  
Jie Zeng ◽  
Min Ji ◽  
Yingxin Zhao ◽  
Pedersen ◽  
Thomas Helmer ◽  
...  

Abstract This study aimed to enhance the removal of phosphate in synthetic rural sewage by using a continuous electrocoagulation combined with biofilm process in an integrated system. Characteristic indexes of biofilm process effluent covering pH, DO, SS, COD and phosphate maintained a narrow fluctuation range and tended not readily to influence the phosphate removal of subsequent electrocoagulation. Three parameters including inter-electrode distance, current intensity and reaction time were selected to investigate the performance of enhancing phosphate removal. On the strength of single-factor tests, the Box-Behnken design (BBD) coupled with response surface methodology (RSM) was applied to investigate the individual and mutual interaction impacts of the major operating parameters and to optimize conditions. The optimum conditions were found to be inter-electrode distance of 1.8 cm, current density of 2.1 mA/cm2 and EC reaction time of 34 min, and the phosphate removal efficiency was achieved to be 90.24% along with less than 1 mg/L in case of periodic polarity switching mode, which raised removal efficiency by 10.10% and reduced operating cost by 0.13 CNY/g PO4− compared to non-switching mode. The combination of biofilm processing and electrocoagulation treatment was proven a valid and feasible method for enhancing phosphate removal.

2011 ◽  
Vol 6 (1) ◽  
Author(s):  
M. Behbahani ◽  
M.R. Alavi Moghaddam ◽  
M. Arami

The aim of this study is to examine the effect of operational parameters on fluoride removal using electrocoagulation method. For this purpose, various operational parameters including initial pH, initial fluoride concentration, applied current, reaction time, electrode connection mode, anode material, electrolyte salt, electrolyte concentration, number of electrodes and interelectrode distance were investigated. The highest defluoridation efficiency achieved at initial pH 6. In the case of initial fluoride concentration, maximum removal efficiency (98.5%) obtained at concentration of 25mg/l. The increase of applied current and reaction time improved defluoridation efficiency up to 99%. The difference of fluoride removal efficiencies between monopolar and bipolar series and monopolar parallel were significant, especially at reaction time of 5 min. When aluminum used as anode material, higher removal efficiency (98.5%) achieved compared to that of iron anode (67.7%). The best electrolyte salt was NaCl with the maximum defluoridation efficiency of 98.5% compared to KNO3 and Na2SO4. The increase of NaCl had no effect on defluoridation efficiency. Number of electrodes had little effect on the amounts of Al3+ ions released in the solution and as a result defluoridation efficiency. Almost the same fluoride removal efficiency obtained for different interelectrode distances.


2020 ◽  
Vol 20 (3) ◽  
pp. 536
Author(s):  
Nurulhuda Amri ◽  
Ahmad Zuhairi Abdullah ◽  
Suzylawati Ismail

This work compares commercial aluminium electrode for use in the treatment of wastewater by electrocoagulation process against waste aluminium cans electrode. The applicability of the waste aluminium cans electrode was tested for decolorization of Acid Red 18 dye as a model pollutant. The batch electrocoagulation process using both types of electrode was conducted at a current density of 25 mA/cm2, a pH of 3, an initial concentration of 100 mg/L and 25 min of reaction time. The elemental composition and surface morphology of both electrode materials and the sludge produced were analyzed using SEM-EDX to establish the correlation between the properties and characteristics of both electrode materials with their dye removal performance. The results demonstrated that waste aluminium cans performed better than commercial aluminium electrode with a removal efficiency of 100% in 25 min of reaction time. This was due to the higher Al dissolution of waste aluminium cans electrode that contributed to the larger amount of Al3+ released into the solution to consequently form more flocs to remove the dye molecules. In conclusion, the proposed waste aluminium electrode was considered as efficient and cost-effective and had the potential to replace the conventional ones in treating colored industrial wastewater using electrocoagulation process.


2011 ◽  
Vol 291-294 ◽  
pp. 1804-1807 ◽  
Author(s):  
Xin Feng Zhu ◽  
Hong Ye Liu ◽  
Peng Hui Shi ◽  
Jun Feng Wu ◽  
Yi Fei Guo

Red mud has been used to develop effective adsorbents to remove phosphate from aqueous solution. The effects of different dosage, pH of solution and reaction time on adsorption have been examined in batch experiments. It was found that red mud samples show higher removal efficiency for phosphate. The results showed that phosphate removal efficiency was found to be 97 % with optimal reaction conditions initial phosphate concentration 100mg L−1, red mud dosage 10g L−1, pH 2.0, respectively. The phosphate removal efficiency of the red mud adsorbents decreases with increase of pH.


2017 ◽  
Vol 77 (1) ◽  
pp. 177-186 ◽  
Author(s):  
Mehtap Tanyol ◽  
Aysenur Ogedey ◽  
Ensar Oguz

Abstract This study examines the removal of chemical oxygen demand (COD) from landfill leachate generated from the municipal landfill site of Bingol, Turkey. The effect of parameters such as current density, pH, and inter-electrode distance during the electrocoagulation (EC) process on COD removal of the process was investigated. Moreover, for COD removal, the energy consumption and operating costs were calculated for iron electrode under the EC conditions. COD removal efficiency was 72.13% at the current density of 16 mA m−2, pH of 8.05, and the inter-electrode distance of 9 mm at the detention time of 60 min with iron electrode and the COD concentration was reduced from 6,100 mg L−1 to 1,700 mg L−1 by EC. The highest value of the electrical energy and electrode consumptions per kg of COD in the optimum conditions were determined as 0.055 kWh kg−1 COD and 3.43 kg kg−1 COD and the highest operating cost value was found to be 1.41 US$ kg−1 COD for 0–60 min time intervals.


2021 ◽  
Vol 896 (1) ◽  
pp. 012025
Author(s):  
B P Samadikun ◽  
W Oktiawan ◽  
Junaidi ◽  
A K Rais ◽  
T A Taqiyya ◽  
...  

Abstract Indonesia is one of the countries that still have to deal with waste problems. In reducing waste, the government has made a series of efforts to reduce waste, especially wastewater. There are many kinds of wastewater. One of them is laundry wastewater. This research aims to estimate the dangerous substance in laundry wastewater and how to treat it. The method using some variables like Al-Al, Al-Fe, Fe-Fe, and Fe-Al and the voltage is changing from 20 V, 30 V, 40 V, and 60 V. The research shows that the most optimum result of laundry wastewater treatment was using Al-Fe electrode plate 60 V. The result that the phosphate concentration decreased by 6.56 mg/l from 9.58 mg/l to 3.01 mg/l and obtained phosphate removal efficiency of 68.56%. The most optimum results for the removal of phosphate levels contained in the 60 V voltage.


2013 ◽  
Vol 864-867 ◽  
pp. 1454-1457 ◽  
Author(s):  
Xiao Li Yuan ◽  
Wen Tang Xia ◽  
Juan An ◽  
Wen Qiang Yang ◽  
Jian Guo Yin

Dolomite, an industrial solid material was used as an adsorbent to remove phosphate anions from wastewater. The effects of initial pH, initial phosphate concentration, reaction time, reaction temperature and adsorbent dosage on the phosphate removal efficiency were investigated. The results show that the phosphate removal efficiency exceed 99% under the conditions of pH 9.5, temperature 30 °C, reaction time 50 min, particle size <0.074 mm, initial phosphate concentration 50 mg•L-1, adsorbent dosage 10g•L-1 and stirring speed 250 r/min. After phosphate removal reaction, the residual phosphate concentrations completely meet the requirement of national discharge standards of the second category pollution (GB 1A (TP = 0.5 mgL-1)).


2019 ◽  
Vol 80 (12) ◽  
pp. 2422-2429 ◽  
Author(s):  
Yahya Esfandyari ◽  
Keivan Saeb ◽  
Ahmad Tavana ◽  
Aptin Rahnavard ◽  
Farid Gholamreza Fahimi

Abstract The present study evaluated the treatment of hospital wastewater by the electrocoagulation process using aluminum and iron electrodes. The effects of pH, voltage and reaction time on the removal efficiencies of the antibiotic cefazolin, chemical oxygen demand (COD) and turbidity were investigated. The results showed that by increasing reaction time and input voltage, the removal efficiency of pollutants was increased. The highest removal efficiency of cefazolin, COD, and turbidity occurred at neutral pH, which may have been related to the formation of aluminum hydroxide (Al(OH)3) flocs through the combination of aluminum released from the surface of the electrode and the hydroxide ions present in the solution. The conductivity of the treated wastewater at neutral to alkaline pH decreased compared to acidic pH, which may have been due to the adsorption of anions and cations from the solution by the Al(OH)3 flocs. The electrode and energy consumption in the present study was higher than in other studies, which may have been due to the high concentration of COD in and the turbidity of the solution.


2021 ◽  
Vol 8 (3) ◽  
pp. 237-244
Author(s):  
Abdoliman Amouei ◽  
Mehdi Pouramir ◽  
Hosseinali Asgharnia ◽  
Mahmoud Mehdinia ◽  
Mohammad Shirmardi ◽  
...  

Background: Leachate contains toxic and non-biodegradable substances that are not easily treated by conventional treatment methods. This study investigated the effect of pH, current density, and reaction time parameters on the removal of cyanide (CN- ), nitrate (NO3- ), turbidity, and chemical oxygen demand (COD) from leachate by electrocoagulation process. Methods: This study was an experimental one with direct current using four parallel bipolar aluminum electrodes with 90% purity. The length, width, and thickness of the electrodes were 5 cm, 10 cm, and 2 mm, respectively. There were 6 holes with a diameter of 0.7 cm on each of the electrodes. The samples were prepared from the old leachate of solid waste landfill in Ghaemshahr, Iran. Results: In this study, at a current density of 33 mA/cm2 and a time of 60 minutes, the optimum removal efficiency of cyanide (100 %) was obtained at pH 5.5 and pH 10. Moreover, the maximum removal of nitrate (99.65 %) and turbidity (86.41 %) were at pH 5.5 and pH 8.3, respectively and the highest removal efficiency of COD (83.14 %) was obtained at pH 10. Conclusion: The results showed that the removal of cyanide, nitrate, turbidity, and COD increases with increasing current density and reaction time. Due to the proper removal of nitrate and cyanide from leachate by electrocoagulation, nitrate and cyanide amounts were less than the allowable contamination level. Based on the results, electrocoagulation is considered an efficient and effective method for removing nitrate and cyanide from old leachate of municipal solid wastes.


2021 ◽  
Vol 880 (1) ◽  
pp. 012033
Author(s):  
A A Al-Raad ◽  
M M Hanafiah

Abstract Inorganic compounds in water can have detrimental effects on human health and the environment due to the high toxicity level of these ionic contaminants. This study assessed the efficiency of electrocoagulation process for removing sulfate (SO4 2−). The technology of electrocoagulation depends mainly on electrical applied that produce coagulant species in a certain position via electro-dissolution of sacrificial anodes which are often made of iron or aluminum. EC process illustrated great potential as a vital method in eliminating numerous types of contaminants including inorganic contaminants at a lesser cost, and ecologically friendly technique. In the present study, aluminum materials were utilized in both cathode and anode electrodes. Water samples were obtained from Sawa Lake, Al-Muthanna Province located in Iraq. Electrocoagulation formations with static electrodes were used under mutual electrical connection. The effects of the different variables such as pH, current density, inter electrode distance, reaction time and stirring speed were scrutinized to obtain a higher removal of SO4 2−. Preliminary outcomes exhibited the following optimal and functional conditions; pH = 8, current density = 0.8A, reaction time (RT) = 80 min, IED = 1 cm, temperature = 27 °C and agitation speed = 500 rpm. The maximum removal efficiency of SO4 2− is 88 %. The present statistical rates proved the effectiveness of EC method in terms of removing salts from lake water.


Sign in / Sign up

Export Citation Format

Share Document