scholarly journals Removal Efficiency of Acid Red 18 Dye from Aqueous Solution Using Different Aluminium-Based Electrode Materials by Electrocoagulation Process

2020 ◽  
Vol 20 (3) ◽  
pp. 536
Author(s):  
Nurulhuda Amri ◽  
Ahmad Zuhairi Abdullah ◽  
Suzylawati Ismail

This work compares commercial aluminium electrode for use in the treatment of wastewater by electrocoagulation process against waste aluminium cans electrode. The applicability of the waste aluminium cans electrode was tested for decolorization of Acid Red 18 dye as a model pollutant. The batch electrocoagulation process using both types of electrode was conducted at a current density of 25 mA/cm2, a pH of 3, an initial concentration of 100 mg/L and 25 min of reaction time. The elemental composition and surface morphology of both electrode materials and the sludge produced were analyzed using SEM-EDX to establish the correlation between the properties and characteristics of both electrode materials with their dye removal performance. The results demonstrated that waste aluminium cans performed better than commercial aluminium electrode with a removal efficiency of 100% in 25 min of reaction time. This was due to the higher Al dissolution of waste aluminium cans electrode that contributed to the larger amount of Al3+ released into the solution to consequently form more flocs to remove the dye molecules. In conclusion, the proposed waste aluminium electrode was considered as efficient and cost-effective and had the potential to replace the conventional ones in treating colored industrial wastewater using electrocoagulation process.

2011 ◽  
Vol 6 (1) ◽  
Author(s):  
M. Behbahani ◽  
M.R. Alavi Moghaddam ◽  
M. Arami

The aim of this study is to examine the effect of operational parameters on fluoride removal using electrocoagulation method. For this purpose, various operational parameters including initial pH, initial fluoride concentration, applied current, reaction time, electrode connection mode, anode material, electrolyte salt, electrolyte concentration, number of electrodes and interelectrode distance were investigated. The highest defluoridation efficiency achieved at initial pH 6. In the case of initial fluoride concentration, maximum removal efficiency (98.5%) obtained at concentration of 25mg/l. The increase of applied current and reaction time improved defluoridation efficiency up to 99%. The difference of fluoride removal efficiencies between monopolar and bipolar series and monopolar parallel were significant, especially at reaction time of 5 min. When aluminum used as anode material, higher removal efficiency (98.5%) achieved compared to that of iron anode (67.7%). The best electrolyte salt was NaCl with the maximum defluoridation efficiency of 98.5% compared to KNO3 and Na2SO4. The increase of NaCl had no effect on defluoridation efficiency. Number of electrodes had little effect on the amounts of Al3+ ions released in the solution and as a result defluoridation efficiency. Almost the same fluoride removal efficiency obtained for different interelectrode distances.


2019 ◽  
Vol 26 (1) ◽  
pp. 24-34 ◽  
Author(s):  
Mohammed Alameen Salem ◽  
Najwa Majeed

Cadmium is one of the heavy metal found in the wastewater of many industries. The electrocoagulation offers many advantages for the removal of cadmium over other methods. So the removal of cadmium from wastewater by using electrocoagulation was studied to investigate the effect of operating parameters on the removal efficiency. The studied parameters were the initial pH, initial concentration, and applied voltage. The study experiments were conducted in a batch reactor with  with two pairs of aluminum electrodes with dimension  and 2mm in thick with 1.5 cm space between them. The optimum removal was obtained at pH =7, initial concentration = 50 mg/L, and applied voltage = 20 V and it was 90%.


Author(s):  
Jie Zeng ◽  
Min Ji ◽  
Yingxin Zhao ◽  
Pedersen ◽  
Thomas Helmer ◽  
...  

Abstract This study aimed to enhance the removal of phosphate in synthetic rural sewage by using a continuous electrocoagulation combined with biofilm process in an integrated system. Characteristic indexes of biofilm process effluent covering pH, DO, SS, COD and phosphate maintained a narrow fluctuation range and tended not readily to influence the phosphate removal of subsequent electrocoagulation. Three parameters including inter-electrode distance, current intensity and reaction time were selected to investigate the performance of enhancing phosphate removal. On the strength of single-factor tests, the Box-Behnken design (BBD) coupled with response surface methodology (RSM) was applied to investigate the individual and mutual interaction impacts of the major operating parameters and to optimize conditions. The optimum conditions were found to be inter-electrode distance of 1.8 cm, current density of 2.1 mA/cm2 and EC reaction time of 34 min, and the phosphate removal efficiency was achieved to be 90.24% along with less than 1 mg/L in case of periodic polarity switching mode, which raised removal efficiency by 10.10% and reduced operating cost by 0.13 CNY/g PO4− compared to non-switching mode. The combination of biofilm processing and electrocoagulation treatment was proven a valid and feasible method for enhancing phosphate removal.


FLUIDA ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 65-72
Author(s):  
Rifki Ardiansyah ◽  
Triyoga Meiditama Putra ◽  
Dian Ratna Suminar ◽  
Agustinus Ngatin

ABSTRAK Salah satu upaya untuk menjaga persediaan air yaitu dengan cara menurunkan parameter air laut agar memenuhi parameter air tawar menggunakan metode elektrokoagulasi. Penelitian ini bertujuan untuk mempelajari pengaruh waktu proses elektrokoagulasi terhadap penurunan TDS, kekeruhan, kadar Cl, dan kadar Fe. Selain itu, untuk mengetahui perbandingan antara elektroda Al dan Fe. Air laut diambil dari Pantai Pelabuhan Ratu. Elektroda yang digunakan adalah Al dan Fe dengan ukuran 15x10 cm2. Tegangan yang digunakan yaitu 5 volt atau rapat arus sebesar 0,137 A/dm2 dengan waktu proses 15, 30, 45, dan 60 menit serta volume bahan bakunya 4 Liter. Penelitian dengan waktu proses 30 menit dan proses pengendapan selama satu hari mampu menurunkan kekeruhan hingga 2,28 NTU (55,07%); TDS hingga 1.010 mg/L (3,71%); kadar Cl hingga 271,98 mg/L (3,52%); dan kadar Fe 0,05 mg/L (40,65%). Proses elektrokoagulasi menggunakan elektroda aluminium lebih baik dibandingkan elektroda besi pada waktu proses 30 menit.   ABSTRACT One of the efforts to maintain water supply is by lowering seawater parameters to meet freshwater parameters using the electrocoagulation method. This study aims to study the effect of electrocoagulation process time on the decrease in TDS, turbidity, Cl content, and Fe content. In addition, to determine the comparison between Al and Fe electrodes. Seawater is taken from Pelabuhan Ratu Beach. The electrodes used are Al and Fe with a size of 15x10 cm2. The voltage used is 5 volts or a current density of 0,137 A/dm2 with processing times of 15, 30, 45, and 60 minutes and the volume of the raw material is 4 liters. Research with a processing time of 30 minutes and sedimentation for one day was able to reduce turbidity up to 2,28 NTU (55,07%); TDS up to 1.010 mg/L (3,71%); Cl content up to 271,98 mg/L (3,52%); and Fe content of 0,05 mg/L (40,65%). The electrocoagulation process using aluminum electrodes was better than iron electrodes at a processing time of 30 minutes.


2012 ◽  
Vol 65 (2) ◽  
pp. 353-360 ◽  
Author(s):  
S. Vasudevan ◽  
J. Lakshmi

The main objective of this study was to investigate the effects of AC and DC on the removal of cadmium from water using iron as anode and cathode. The various operating parameters on the removal efficiency of cadmium were investigated. The results showed that the optimum removal efficiency of 98.1 and 97.3% with the energy consumption of 0.734 and 1.413 kWh/kL was achieved at a current density of 0.2 A/dm2, at pH of 7.0 using AC and DC respectively. The adsorption process follows second order kinetics and the temperature studies showed that adsorption was endothermic and spontaneous in nature.


2012 ◽  
Vol 9 (4) ◽  
pp. 2297-2308 ◽  
Author(s):  
Edris Bazrafshan ◽  
Kamal Aldin Ownagh ◽  
Amir Hossein Mahvi

Fluoride in drinking water above permissible level is responsible for human being affected by skeletal fluorosis. The present study was carried out to assess the ability of electrocoagulation process with iron and aluminum electrodes in order to removal of fluoride from aqueous solutions. Several working parameters, such as fluoride concentration, pH, applied voltage and reaction time were studied to achieve a higher removal capacity. Variable concentrations (1, 5 and 10 mg L-1) of fluoride solutions were prepared by mixing proper amount of sodium fluoride with deionized water. The varying pH of the initial solution (3, 7 and 10) was also studied to measure their effects on the fluoride removal efficiency. Results obtained with synthetic solution revealed that the most effective removal capacities of fluoride could be achieved at 40 V electrical potential. In addition, the increase of electrical potential, in the range of 10-40 V, enhanced the treatment rate. Also comparison of fluoride removal efficiency showed that removal efficiency is similar with iron and aluminum electrodes. Finally it can be concluded that the electrocoagulation process has the potential to be utilized for the cost-effective removal of fluoride from water and wastewater.


Pollutants ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 51-64
Author(s):  
Chandra Mouli R. Madhuranthakam ◽  
Archana Thomas ◽  
Zhainab Akhter ◽  
Shannon Q. Fernandes ◽  
Ali Elkamel

Biosorption of chromium (Cr(VI)) is studied by using raw (chemically not modified) Moringa (Moringa Oleifera) leaf powder without any pretreatment. Cr(VI) is one of the potentially harmful heavy metals found in industrial wastewater. In the Moringa leaf powder, the presence of a significant amount of organic acids form the source for the biosorption of Cr(VI). The concentration of Cr(VI) in the feed solution is varied and different dosages of the proposed biosorbent are used to study its efficiency in the removal of Cr(VI). The concentration of Cr(VI) is varied from 1 ppm to 20 ppm while the amount of biosorbent is varied from 0.5 g to 2.5 g. The equilibrium time for adsorption of Cr(VI) is observed to vary between half an hour and 90 min. The metal removal efficiency varied from 30% to 90% which is a significant achievement compared to other conventional methods which are either energy-intensive or not cost effective. The experimental results are modeled using Langmuir, Freundlich and Redlich–Peterson isotherms. The metal removal efficiency is attributed to the chelating effect of carboxylate and hydroxyl groups present in the moringa leaves and is confirmed from the FTIR analysis. Further molecular docking simulations are performed to confirm the binding of the metal to the speculated sites within the different acids present in the moringa leaves. Untreated green moringa leaf powder used as a biosorbent in this study leads to a sustainable and cheaper option for treating wastewater containing Cr(VI).


2019 ◽  
Vol 80 (12) ◽  
pp. 2422-2429 ◽  
Author(s):  
Yahya Esfandyari ◽  
Keivan Saeb ◽  
Ahmad Tavana ◽  
Aptin Rahnavard ◽  
Farid Gholamreza Fahimi

Abstract The present study evaluated the treatment of hospital wastewater by the electrocoagulation process using aluminum and iron electrodes. The effects of pH, voltage and reaction time on the removal efficiencies of the antibiotic cefazolin, chemical oxygen demand (COD) and turbidity were investigated. The results showed that by increasing reaction time and input voltage, the removal efficiency of pollutants was increased. The highest removal efficiency of cefazolin, COD, and turbidity occurred at neutral pH, which may have been related to the formation of aluminum hydroxide (Al(OH)3) flocs through the combination of aluminum released from the surface of the electrode and the hydroxide ions present in the solution. The conductivity of the treated wastewater at neutral to alkaline pH decreased compared to acidic pH, which may have been due to the adsorption of anions and cations from the solution by the Al(OH)3 flocs. The electrode and energy consumption in the present study was higher than in other studies, which may have been due to the high concentration of COD in and the turbidity of the solution.


2021 ◽  
Vol 8 (3) ◽  
pp. 237-244
Author(s):  
Abdoliman Amouei ◽  
Mehdi Pouramir ◽  
Hosseinali Asgharnia ◽  
Mahmoud Mehdinia ◽  
Mohammad Shirmardi ◽  
...  

Background: Leachate contains toxic and non-biodegradable substances that are not easily treated by conventional treatment methods. This study investigated the effect of pH, current density, and reaction time parameters on the removal of cyanide (CN- ), nitrate (NO3- ), turbidity, and chemical oxygen demand (COD) from leachate by electrocoagulation process. Methods: This study was an experimental one with direct current using four parallel bipolar aluminum electrodes with 90% purity. The length, width, and thickness of the electrodes were 5 cm, 10 cm, and 2 mm, respectively. There were 6 holes with a diameter of 0.7 cm on each of the electrodes. The samples were prepared from the old leachate of solid waste landfill in Ghaemshahr, Iran. Results: In this study, at a current density of 33 mA/cm2 and a time of 60 minutes, the optimum removal efficiency of cyanide (100 %) was obtained at pH 5.5 and pH 10. Moreover, the maximum removal of nitrate (99.65 %) and turbidity (86.41 %) were at pH 5.5 and pH 8.3, respectively and the highest removal efficiency of COD (83.14 %) was obtained at pH 10. Conclusion: The results showed that the removal of cyanide, nitrate, turbidity, and COD increases with increasing current density and reaction time. Due to the proper removal of nitrate and cyanide from leachate by electrocoagulation, nitrate and cyanide amounts were less than the allowable contamination level. Based on the results, electrocoagulation is considered an efficient and effective method for removing nitrate and cyanide from old leachate of municipal solid wastes.


2012 ◽  
Vol 9 (4) ◽  
pp. 2453-2461 ◽  
Author(s):  
Edris Bazrafshan ◽  
Hamed Biglari ◽  
Amir Hossein Mahvi

At present study the performance of electrocoagulation process using iron electrodes sacrificial anode has been investigated for removal of HA from artificial aqueous solution. The experiments were performed in a bipolar batch reactor with four iron electrode connected in parallel. Several working parameters, such as initial pH (3, 5, 7, and 9), electrical conductivity (50 V) and reaction time were studied in an attempt to achieve the highest removal capacity. Solutions of HA with concentration equal 20 mg L-1were prepared. To follow the progress of the treatment, samples of 10 ml were taken at 15, 30, 45, 60, and 75 min interval. Finally HA concentration was measured by UV absorbance at 254 nm (UV254) and TOC concentration was measured by TOC Analyser. The maximum efficiency of HA removal which was obtained in voltage of 50 V, reaction time of 75 min, initial concentration 20 mg L-1, conductivity 3000 µS/Cm and pH 5, is equal to 92.69%. But for natural water samples at the same optimum condition removal efficiency was low (68.8 %). It can be concluded that the electrocoagulation process has the potential to be utilized for cost-effective removal of HA from aqueous environments.


Sign in / Sign up

Export Citation Format

Share Document