scholarly journals Sulfate (SO4 2−) removal by electrocoagulation process under combined electrical connection of electrodes

2021 ◽  
Vol 880 (1) ◽  
pp. 012033
Author(s):  
A A Al-Raad ◽  
M M Hanafiah

Abstract Inorganic compounds in water can have detrimental effects on human health and the environment due to the high toxicity level of these ionic contaminants. This study assessed the efficiency of electrocoagulation process for removing sulfate (SO4 2−). The technology of electrocoagulation depends mainly on electrical applied that produce coagulant species in a certain position via electro-dissolution of sacrificial anodes which are often made of iron or aluminum. EC process illustrated great potential as a vital method in eliminating numerous types of contaminants including inorganic contaminants at a lesser cost, and ecologically friendly technique. In the present study, aluminum materials were utilized in both cathode and anode electrodes. Water samples were obtained from Sawa Lake, Al-Muthanna Province located in Iraq. Electrocoagulation formations with static electrodes were used under mutual electrical connection. The effects of the different variables such as pH, current density, inter electrode distance, reaction time and stirring speed were scrutinized to obtain a higher removal of SO4 2−. Preliminary outcomes exhibited the following optimal and functional conditions; pH = 8, current density = 0.8A, reaction time (RT) = 80 min, IED = 1 cm, temperature = 27 °C and agitation speed = 500 rpm. The maximum removal efficiency of SO4 2− is 88 %. The present statistical rates proved the effectiveness of EC method in terms of removing salts from lake water.

Author(s):  
Jie Zeng ◽  
Min Ji ◽  
Yingxin Zhao ◽  
Pedersen ◽  
Thomas Helmer ◽  
...  

Abstract This study aimed to enhance the removal of phosphate in synthetic rural sewage by using a continuous electrocoagulation combined with biofilm process in an integrated system. Characteristic indexes of biofilm process effluent covering pH, DO, SS, COD and phosphate maintained a narrow fluctuation range and tended not readily to influence the phosphate removal of subsequent electrocoagulation. Three parameters including inter-electrode distance, current intensity and reaction time were selected to investigate the performance of enhancing phosphate removal. On the strength of single-factor tests, the Box-Behnken design (BBD) coupled with response surface methodology (RSM) was applied to investigate the individual and mutual interaction impacts of the major operating parameters and to optimize conditions. The optimum conditions were found to be inter-electrode distance of 1.8 cm, current density of 2.1 mA/cm2 and EC reaction time of 34 min, and the phosphate removal efficiency was achieved to be 90.24% along with less than 1 mg/L in case of periodic polarity switching mode, which raised removal efficiency by 10.10% and reduced operating cost by 0.13 CNY/g PO4− compared to non-switching mode. The combination of biofilm processing and electrocoagulation treatment was proven a valid and feasible method for enhancing phosphate removal.


2017 ◽  
Vol 77 (1) ◽  
pp. 177-186 ◽  
Author(s):  
Mehtap Tanyol ◽  
Aysenur Ogedey ◽  
Ensar Oguz

Abstract This study examines the removal of chemical oxygen demand (COD) from landfill leachate generated from the municipal landfill site of Bingol, Turkey. The effect of parameters such as current density, pH, and inter-electrode distance during the electrocoagulation (EC) process on COD removal of the process was investigated. Moreover, for COD removal, the energy consumption and operating costs were calculated for iron electrode under the EC conditions. COD removal efficiency was 72.13% at the current density of 16 mA m−2, pH of 8.05, and the inter-electrode distance of 9 mm at the detention time of 60 min with iron electrode and the COD concentration was reduced from 6,100 mg L−1 to 1,700 mg L−1 by EC. The highest value of the electrical energy and electrode consumptions per kg of COD in the optimum conditions were determined as 0.055 kWh kg−1 COD and 3.43 kg kg−1 COD and the highest operating cost value was found to be 1.41 US$ kg−1 COD for 0–60 min time intervals.


2014 ◽  
Vol 15 ◽  
pp. 89-93 ◽  
Author(s):  
R Ulambayar ◽  
J Oyuntsetseg ◽  
A Tsiiregzen ◽  
D Bayaraa

Trivalent chromium (Cr3+) removal from aqueous solution  by electrocoagulation using iron electrodes material was investigated in this paper. Effects of current density, initial concentration of Cr 3+, operating time,  pH, electrode distance, and operating cost have been investigated. At higher current density and solution pH, remarkable removal of Cr3+ was observed. Experiments have been show that the maximum removal percentage of the Cr3+ 99.89 % was at initial concentration 1000mg/L,  current density 9.34mA/cm2 and reaction time 1 hours. Energy consumption was calculated  for Cr3+ removal at different time. The method is observed to be very effective in the removal Cr3+ ion from aqueous solution. Electrocoagulation process need simple equipment, designable any size, use any chemical substances and low operating cost.DOI: http://doi.dx.org/10.5564/mjc.v15i0.330 Mongolian Journal of Chemistry 15 (41), 2014, p89-93


Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 205
Author(s):  
Tahereh Rookesh ◽  
Mohammad Reza Samaei ◽  
Saeed Yousefinejad ◽  
Hassan Hashemi ◽  
Zahra Derakhshan ◽  
...  

Electrocoagulation is a widely used method for treating leachate since it is cost effective and eco-friendly. In the present study, the electrocoagulation process was employed to remove chemical oxygen demand (COD), NH4+, total dissolved solids (TDS), total suspended solids (TSS), turbidity, and color from landfill leachate. At first, lime was used as a pretreatment, then the Fe/Gr and Ti/PbO2/steel electrodes were used, and the optimum electrode was selected. Afterwards, the effects of some variables, including pH, current density, temperature, the inter-electrode distance, and the type of electrolyte were investigated. Results showed that COD, NH4+, TSS, TDS, electrical conductivity (EC), turbidity, color, and pH of effluent pretreatment chemical reached 22,371, 385, 884, 21,820 (mg/L), 13.8 (ms/cm3), 1355 (NTU), 8500 (TCU) and 10, respectively (the removal efficiency was 0, 20.37, 32.4, 61.99, 59.18, and 56.6 percent). With the Fe/Gr electrode, the optimal condition was observed as follows: pH of 7.5, current density of 64 mA/cm2, inter-electrode distance was equal to 1.5 cm, temperature at 20 °C, and retention time 2–4 h. Overall, the electrocoagulation with the Fe/Gr electrode was a suitable technology for landfill leachate treatment due to its effectiveness for the removal of both COD and NH4+, with advantageous performance indicators.


2017 ◽  
Vol 76 (11) ◽  
pp. 2907-2917 ◽  
Author(s):  
Aysenur Ogedey ◽  
Mehtap Tanyol

Abstract Leachate is the most difficult wastewater to be treated due to its complex content and high pollution release. For this reason, since it is not possible to be treated with a single process, a pre-treatment is needed. In the present study, a batch electrocoagulation reactor containing aluminum and iron electrodes was used to reduce chemical oxygen demand (COD) from landfill leachate (Tunceli, Turkey). Optimization of COD elimination was carried out with response surface methodology to describe the interaction effect of four main process independent parameters (current density, inter-electrode distance, pH and time of electrolysis). The optimum current density, inter-electrode distance, pH and time of electrolysis for maximum COD removal (43%) were found to be 19.42 mA/m2, 0.96 cm, 7.23 and 67.64 min, respectively. The results shown that the electrocoagulation process can be used as a pre-treatment step for leachate.


2011 ◽  
Vol 183-185 ◽  
pp. 417-421
Author(s):  
Yong Bo Lin ◽  
Yang Yang ◽  
Shuai Wang

Determined to adopt iron as anodes, and Ti-base board with coating as cathodes. To optimize the reaction conditions of phosphorus removal by electrocoagulation (EC), testing the effect of current density, electrode distance, initial pH and electrolysis time on the phosphorus removal. According to the results, the optimal conditions for the phosphorus removal in the EC treatment were obtained, i.e., 20 mA/cm2 of current density, 2cm of distance and 10min of reaction time were optimum. Under these conditions, phosphorus removal by electrocoagulation reached to 95.07%, 10min later the change of total phosphorus (TP) removal rate is not obvious. By the end of this test, phosphorus removal by electrocoagulation reached to 99.68%.


Author(s):  
Maryam Dolatabadi ◽  
Roya Malekahmadi ◽  
Akram Ghorbanian ◽  
Saeid Ahmadzadeh

Introduction: Endocrine disruptive compounds as a class of organic contaminants in the aquatic environment received severe attention in the last decades. The release of bisphenol A (BPA) as a hazardous organic chemical into the environment has caused high health and environmental concerns. Therefore, its removal from aquatic environments is strongly recommended. The present study deals with BPA removal efficiency from an aqueous environment using the electrocoagulation process (ECP). Materials and Methods: The effects of parameters including BPA concentration (1-10 mg L-1), current density (3-15 mA cm-2), pH (4-10), and reaction time (5-30 min) on the treatment process were investigated. Response surface methodology (RSM) was employed for optimization of the ECP. The significance of the developed model was investigated by the obtained F-value and P-value. Results: The maximum BPA removal of 98.2% was attained at pH of 8.5, BPA concentration of 3.25 mg L-1, the current density of 12.0 mA cm-2, and reaction time of 23 min. The significance of the developed model was confirmed by the high F-value of 46.69 and the very low P-value of < 0.0001. Furthermore, the electrical energy consumption of the process was found to be 0.308 kWh m-3 in the optimum condition. Conclusion: The obtained experimental results revealed that the co-precipitation and the adsorption process through the electrostatic interactions as the main removal mechanisms controlled the treatment process.


2016 ◽  
Vol 7 (3) ◽  
pp. 378-386 ◽  
Author(s):  
Tao Zheng

The main aim of this study is to investigate the technical and economic feasibility of the pulse electrocoagulation (PE) process on the treatment of oilfield alkali/surfactant/polymer flooding produced water. By using an Fe electrode, the performance of the PE process was analyzed in terms of operating parameters such as pulse duty cycle, current density, pulse frequency, electrode distance, and reaction time with removal efficiencies, some of which are presented in figures and others are given in tables due to the numbers of parameters. Under the optimal conditions of a pulse duty cycle of 0.3, current density of 35 mA/cm2, pulse frequency of 3.0 kHz, electrode distance of 1.0 cm, and reaction time of 40 min, the removal efficiencies of chemical oxygen demand (COD), oils and greases, turbidity, total suspended solids, and polyacrylamide reach 98.3, 99.0, 98.8, 98.1 and 94.3%, respectively, with an energy consumption of 0.19 kWh/kg CODremoved and an electrode consumption of 3.1 kg Fe/kg CODremoved. The quality of the final effluent could satisfy the requirement of the national discharge standard. Compared with the traditional direct current method, the PE process could save 76% of the energy. Moreover, the treatment performance of PE is much better than traditional chemical coagulation treatment using polymeric ferric sulfate.


2021 ◽  
Vol 8 (3) ◽  
pp. 237-244
Author(s):  
Abdoliman Amouei ◽  
Mehdi Pouramir ◽  
Hosseinali Asgharnia ◽  
Mahmoud Mehdinia ◽  
Mohammad Shirmardi ◽  
...  

Background: Leachate contains toxic and non-biodegradable substances that are not easily treated by conventional treatment methods. This study investigated the effect of pH, current density, and reaction time parameters on the removal of cyanide (CN- ), nitrate (NO3- ), turbidity, and chemical oxygen demand (COD) from leachate by electrocoagulation process. Methods: This study was an experimental one with direct current using four parallel bipolar aluminum electrodes with 90% purity. The length, width, and thickness of the electrodes were 5 cm, 10 cm, and 2 mm, respectively. There were 6 holes with a diameter of 0.7 cm on each of the electrodes. The samples were prepared from the old leachate of solid waste landfill in Ghaemshahr, Iran. Results: In this study, at a current density of 33 mA/cm2 and a time of 60 minutes, the optimum removal efficiency of cyanide (100 %) was obtained at pH 5.5 and pH 10. Moreover, the maximum removal of nitrate (99.65 %) and turbidity (86.41 %) were at pH 5.5 and pH 8.3, respectively and the highest removal efficiency of COD (83.14 %) was obtained at pH 10. Conclusion: The results showed that the removal of cyanide, nitrate, turbidity, and COD increases with increasing current density and reaction time. Due to the proper removal of nitrate and cyanide from leachate by electrocoagulation, nitrate and cyanide amounts were less than the allowable contamination level. Based on the results, electrocoagulation is considered an efficient and effective method for removing nitrate and cyanide from old leachate of municipal solid wastes.


2020 ◽  
Author(s):  
Shaimaa T Kadhum ◽  
Ghayda Y Alkindi ◽  
Talib M Albayati

Abstract The rise in toxic industrial and domestic wastewater due to urbanization makes it necessary to pursue new, alternative routes for the removal of refractory pollutants. In this study, both unsupported nano zerovalent iron (NZVI) and silty clay-supported nano zerovalent iron (SC-NZVI) were employed as a granular third electrode (3-D) in an electrochemical reactor. The electrochemical system with two aluminum electrodes as anode and cathode was performed as a granular third electrode treatment process to degrade aqueous phenol. The maximum removal rate of phenol using the tow electrodes electrochemical process (2-D) was 82%. The optimum conditions in a 2-D electrode were as follows: pH = 4, electrolysis time = 30 min, current density = 50 mA/cm2, electrode distance = 4 cm, and phenol concentration = 0.5 g/L. It was concluded that the 3-D electrode system exhibited high efficiency in removing phenolic wastewater in a third electrode system. The optimum conditions were as follows: pH = 2, electrolysis time = 30 min, current density = 50 mA/cm2, electrode distance = 4 cm, and phenol concentration = 0.5 g/L. The maximum removal efficiencies of phenol in the presence of a 3-D electrode with doses of NZVI = 1 g/L or SC-NZVI = 1.25 g/L were 96.1 and 97.8%, respectively.


Sign in / Sign up

Export Citation Format

Share Document