scholarly journals Enanced removal of scaling cations from oilfield produced water by carrier mineral floatation

Author(s):  
Hao Sun ◽  
Yuwen Liu ◽  
Dandan Liu ◽  
Shaomin Li ◽  
Xiaoqing Li ◽  
...  

Abstract This work reports a novel carrier flotation protocol for removing scaling cations from an oilfield produced water source which significantly reduces the collector consumption by employing natural minerals such as quartz, montmorillonite and talcum as the scaling cations carriers. The scaling cations uptake onto all carrier minerals exhibited homogeneous and monolayer adsorption, which was mainly dominated by physisorption. After adding oleate collector, the scaling cations removal rate was further enhanced, which was attributed to its high affinity with the scaling cations. Notably, the talcum flotation process simultaneously offered high scaling cations removal rate (76.1%) and mineral recovery rate (98.3%), which achieved a sediment yield reduction of 72.2%. By summarizing the characterization results, the scaling cations removal mechanisms were also proposed. Moreover, high regeneration efficiencies (86.1% and 84.8% for quartz and talcum regeneration within 3 cycles) were achieved by the proposed regeneration protocol. This carrier flotation protocol with its low collector consumption offered technical promise for scaling cations removal from oilfield produced water.

2018 ◽  
Vol 17 (2) ◽  
pp. 181-192
Author(s):  
Salima Chebbi ◽  
Atmane Allouche ◽  
Marian Schwarz ◽  
Souhila Rabhi ◽  
Hayet Belkacemi ◽  
...  

Abstract The present study investigates the application of induced air flotation (IAF) technique on PAHs (PAHs) removal performance from a real oilfield produced water of a separator cell. The quantification of total PAHs (PAHtot) was done using ultraviolet-visible spectrometry (UV-Vis) according to the naphthalene calibration curve. The UV-Vis spectra of naphthalene dissolved in a mixture of the binary solvent (water-ethanol) and the Tween 80 showed stability in the molecular orbital of C10H8. The use of small concentration of Tween 80 was revealed to be discrete in the quantification of PAHtot. The flotation process was improved at the critical micelle concentration of Tween 80 (CMC) of 2 % and the critical coalescence concentration of ethanol (CCC) of 0.5 mL/L for the PAHtot recovery of 49.76 % and the PAHtot content in the pulp of 50.24 %. At these concentrations, half of PAHtot was removed from produced water PW. Above the CMC and the CCC, the PAHtot recovery decreased and the PAHtot content in the pulp increased. It was found that there is a collector concentration at which the amount of water carrying from the pulp to the concentrate was increased and in parallel, the PAHtot recovery increased and the PAHtot content in the pulp decreased. Both of the CMC and the CCC have promoted the decrease on the conditioning time from 30 to 10 min and the flotation time from 20 to 6 min. Since the impeller speed and air flow rate were constant, the flotation of PAHs was limited. The flotation kinetics of PAHtot was described by the Higuchi model.


2020 ◽  
pp. 341-360
Author(s):  
Tapan Jyoti Gogoi ◽  
Subrata Borgohain Gogoi ◽  
Pranab Boral

2020 ◽  
Vol 20 (2) ◽  
pp. 360
Author(s):  
Ku Esyra Hani ◽  
Mohammed Abdalla Ayoub

The objective of this study was to investigate the effect of polymer (GLP-100) and surfactant (MFOMAX) towards the efficiency of oil removal in a flotation column by using the Response Surface Methodology (RSM). Various concentrations of surfactant (250, 372 and 500 ppm) and polymer (450, 670, and 900 ppm) produced water were prepared. Dulang crude oil was used in the experiments. Flotation operating parameters such as gas flow rate (1–3 L/min) and duration of flotation (2–10 min) were also investigated. The efficiency of oil removal was calculated based on the difference between the initial concentration of oil and the final concentration of oil after the flotation process. From the ANOVA analysis, it was found that the gas flow rate, surfactant concentration, and polymer concentration contributed significantly to the efficiency of oil removal. Extra experiments were conducted to verify the developed equation at a randomly selected point using 450 ppm of polymer concentration, 250 ppm of surfactant concentration, 3 L/min gas flowrate and duration of 10 min. From these extra experiments, a low standard deviation of 1.96 was discovered. From this value, it indicates that the equation can be used to predict the efficiency of oil removal in the presence of surfactant and polymer (SP) by using a laboratory flotation column.


Author(s):  
N. Chin ◽  
S. O. Lai ◽  
K. C. Chong ◽  
S. S. Lee ◽  
C. H. Koo ◽  
...  

The study was concerned with the treatment of tank dewatering produced water using hybrid microfiltration (MF) and ultrafiltration (UF) processes. The pre-treatment MF membrane was fabricated with polyethersulfone (PES), n-methyl-2-pyrrolidone (NMP) and polyvinylpyrrolidone (PVP). The UF membranes meanwhile contained additional component, i.e., titanium dioxide (TiO2) nanoparticles in the range of zero to 1.0 wt.%. The membrane performances were analysed with respect to permeate flux, oil removal and flux recovery ratio. An increase in TiO2 nanoparticles enhanced the pore formation, porosity and pure water permeability due to improved hydrophilicity. The permeate flux of UF membranes increased with the increase of TiO2 nanoparticles and pressure. The oil removal rate by MF process was only 52.35%, whereas the oil rejection efficiency was between 82.34% and 95.71% for UF process. It should be highlighted that the overall oil removal rate could achieve as high as 97.96%. Based on the results, the PES membrane incorporated with 1.0 wt.% TiO2 was proved to be the most promising membrane at a transmembrane pressure of 3 bar. Although 1.0 M NaOH solution could be used as cleaning agent to recover membrane water flux, it is not capable of achieving good results as only 52.18% recovery rate was obtained.


Sign in / Sign up

Export Citation Format

Share Document