STRENGTH AND PERMEABILITY CHARACTERISTICS OF ROAD BASE MATERIALS BLENDED WITH FLY ASH AND BOTTOM ASH

2017 ◽  
Vol 12 (32) ◽  
Author(s):  
Jonathan R. Dungca
2011 ◽  
Vol 250-253 ◽  
pp. 755-760
Author(s):  
Dong Xing Wang ◽  
Rachid Zentar ◽  
Nor Edine Abriak ◽  
Wei Ya Xu

Traditional approaches such as ocean dumping and inland deposit are unsatisfactory for the management of dredged sediments, in the context of sustainable development. The solidified sediments with fly ash and lime as road base materials are preferred to conserve land and minimize impact to environment. A series of tests, such as compaction tests, tensile strength tests and swell tests, were performed to explore mechanical and swell properties of Dunkirk dredged materials. The fly ash contributes to the considerable increase in elastic modulus and the small increase in tensile strength in the presence of lime. Then the potential of treated sediments as road base material is evaluated. After immersion in water for 4 days, the addition of fly ash can induce a remarkable increase in swell percents in contrast with the lime-based sediments.


2021 ◽  
Vol 284 ◽  
pp. 124777
Author(s):  
Yong Li ◽  
Xiaoming Liu ◽  
Zepeng Li ◽  
Yongyu Ren ◽  
Yaguang Wang ◽  
...  
Keyword(s):  
Fly Ash ◽  
Red Mud ◽  

2012 ◽  
Vol 174-177 ◽  
pp. 676-680
Author(s):  
Fang Xu ◽  
Ming Kai Zhou ◽  
Jian Ping Chen

The unconfined compressive strength is used to be the valuation index, the mechanical performance of three kinds of new road base material, which are fly ash stabilized steel slag sand (FA-SS for short), lime and fly ash stabilized steel slag sand (L-FA-SS for short), cement and fly ash stabilized steel slag sand(C-FA-SS for short), are studied in this paper. The results show that the unconfined compressive strength performance of FA-SS is similar to L-FA-SS, and it can meet the highest strength when the ratio of steel slag to fly ash is 1:1~2:1. When the ratio of fly ash to the steel slag is 10:90, it is good to use cement stabilizing. Comparing the new road base materials with the traditional road base material, the former has better strength performance and economy function advantage.


2010 ◽  
Vol 168-170 ◽  
pp. 133-138
Author(s):  
Min Yang ◽  
Yan Xie ◽  
Ying Pang

Stabilized soil is widely used as road base and sub-base materials, and is sometimes used as covering for waste matter in China. In soil stabilization, the property of a locally available soil are usually modified though chemical stabilization[1]. Cement stabilization and lime stabilization are the two most commonly used methods. Lime-fly ash stabilized soil has been widely applied in road engineering due to its good integrity, great bearing capacity, high stiffness, and water-proofing quality[2-4]. One disadvantage of lime-fly ash stabilized soil is that without any additives, its inherent low initial strength makes it inappropriate for use under low-temperature conditions. Researchers have found that the pozzolanic reactivity among lime, fly ash, and soil contributes to the strength of lime-fly ash stabilized soil. To increase the initial strength of lime-fly ash stabilized soil, many approaches have been used to accelerate the pozzolanic reaction. Sulfate activation is one of the methods that has been widely investigated, specifically, Na2SO4 and CaSO4[5]. PG, another sulfate, has also been investigated. However, existing studies have limited to the investigation of the development of strength of the stabilized soil as road base and sub-base materials. The effect of PG on the durability of stabilized soil has rarely been implicated. This work aims to study the effect of thermally treated PG (400°C) on the properties of durability, in addition to other aspects, of lime-fly ash stabilized soil. Lime-fly ash stabilized soil with different proportions of calcined PG were prepared and cured at normal conditions for 7 d and 28 d. Mass loss and strength loss under different treatments were determined. X-ray diffraction(XRD) patterns and scanning electron microscopy(SEM) photos were examined to gauge whether improvements in the performances of the stabilized soil can be obtained by use of thermally treated PG.


Author(s):  
L. L. Sutter ◽  
G. R. Dewey ◽  
J. F. Sandell

Municipal waste combustion typically involves both energy recovery as well as volume reduction of municipal solid waste prior to landfilling. However, due to environmental concerns, municipal waste combustion (MWC) has not been a widely accepted practice. A primary concern is the leaching behavior of MWC ash when it is stored in a landfill. The ash consists of a finely divided fly ash fraction (10% by volume) and a coarser bottom ash (90% by volume). Typically, MWC fly ash fails tests used to evaluate leaching behavior due to high amounts of soluble lead and cadmium species. The focus of this study was to identify specific lead bearing phases in MWC fly ash. Detailed information regarding lead speciation is necessary to completely understand the leaching behavior of MWC ash.


Sign in / Sign up

Export Citation Format

Share Document