Effect of Fly Ash and Lime Treatment on Mechanical and Swell Properties of Dunkirk Dredged Sediments

2011 ◽  
Vol 250-253 ◽  
pp. 755-760
Author(s):  
Dong Xing Wang ◽  
Rachid Zentar ◽  
Nor Edine Abriak ◽  
Wei Ya Xu

Traditional approaches such as ocean dumping and inland deposit are unsatisfactory for the management of dredged sediments, in the context of sustainable development. The solidified sediments with fly ash and lime as road base materials are preferred to conserve land and minimize impact to environment. A series of tests, such as compaction tests, tensile strength tests and swell tests, were performed to explore mechanical and swell properties of Dunkirk dredged materials. The fly ash contributes to the considerable increase in elastic modulus and the small increase in tensile strength in the presence of lime. Then the potential of treated sediments as road base material is evaluated. After immersion in water for 4 days, the addition of fly ash can induce a remarkable increase in swell percents in contrast with the lime-based sediments.

2012 ◽  
Vol 174-177 ◽  
pp. 676-680
Author(s):  
Fang Xu ◽  
Ming Kai Zhou ◽  
Jian Ping Chen

The unconfined compressive strength is used to be the valuation index, the mechanical performance of three kinds of new road base material, which are fly ash stabilized steel slag sand (FA-SS for short), lime and fly ash stabilized steel slag sand (L-FA-SS for short), cement and fly ash stabilized steel slag sand(C-FA-SS for short), are studied in this paper. The results show that the unconfined compressive strength performance of FA-SS is similar to L-FA-SS, and it can meet the highest strength when the ratio of steel slag to fly ash is 1:1~2:1. When the ratio of fly ash to the steel slag is 10:90, it is good to use cement stabilizing. Comparing the new road base materials with the traditional road base material, the former has better strength performance and economy function advantage.


2013 ◽  
Vol 811 ◽  
pp. 146-151
Author(s):  
Chen Wei Chen ◽  
Fu Xin Yang ◽  
Li Xin Lu ◽  
Jin Xie ◽  
Li Li

The Flexible Intermediate Bulk Container (FIBC) is a flexible transportation packaging container that is weaved by polyolefin plastic ribbon-like filament, which is widely used in the storage and transportation of granular and powder materials. When the FIBC was affected by environment factors synthetically under using, such as light, heat and air etc, it would come into degradation and its mechanical properties reduced. In this study, the basic mechanical properties of polypropylene FIBC base material were tested by tensile experiment and the reason of main base material mechanical properties difference between theoretical value and experimental value was analyzed. Based on the FIBC different using environments, the natural exposure experiment and high/low temperature experiments were carried out, we took tensile strength holding ratio and elongation holding ratio as evaluating indicator and analyzed law of influence of the different experiment condition on base material mechanical properties, which provided valuable reference for FIBC designing and manufacturing. Along with the experiment time increased, the color of base material changed from milk white to yellow slowly, the tensile strength and elongation reduced, the influencing grade was as follow: natural exposure>high temperature>low temperature. The results of natural exposure experiment showed that there was difference of anti-aging performance among the FIBC base material, the mechanical properties of woof fabric and belt reduced evidently, while others reduced slowly. For high (45°C)/low (-25°C) temperature experiments, the reduction of FIBC base materials mechanical properties were not obvious and woof fabric reduced a little faster comparatively.


2021 ◽  
Vol 284 ◽  
pp. 124777
Author(s):  
Yong Li ◽  
Xiaoming Liu ◽  
Zepeng Li ◽  
Yongyu Ren ◽  
Yaguang Wang ◽  
...  
Keyword(s):  
Fly Ash ◽  
Red Mud ◽  

Abstract. Replacing cement with fly ash has recently created huge popularity among the construction field because of its huge production, efficient resources and sustainability aspect. This study is made to determine the High-Volume fly-ash concrete (HVFC) performance by adding additives. The general used concrete mixture is prepared by proportioning fly ash (40-50%) as a replacement. The concrete specimen was found to have better compressive strengths and hence, passed the strength tests. By incorporating additive Nano-SiO2 and superplasticizer the following compression, flexural rigidity, splitting tensile strength and elasticity modulus were observed in the specimen to establish the cement and fly ash bond. The concrete performance mix with replacement fly ash at different percent was found to have good compressive strength during test and stayed undamaged during the entire period of exposure.


2021 ◽  
Vol 93 (2) ◽  
pp. 5-12
Author(s):  
Miloš Mičian ◽  
Martin Frátrik ◽  
Libor Trško ◽  
Marek Gucwa ◽  
Jerzy Winczek ◽  
...  

The paper presents the application of MAG welding to TMCP steels (thermo-mechanically controlled processed) grade S960MC and 3 mm thick. In the analyzed joints, the research focused on their mechanical properties and changes in the heat-affected zone (HAZ) that occur in this type of steels. The hardness and tensile strength tests carried out showed a significant decrease in the properties of the joint compared to the declared values of the base material and the filler material used in the tests. In the case of hardness, it was a decrease of 34% in HAZ and by 15-21% in relation to the strength limit. Changes in HAZ properties of a joint correlate with changes in its structure.


2010 ◽  
Vol 168-170 ◽  
pp. 133-138
Author(s):  
Min Yang ◽  
Yan Xie ◽  
Ying Pang

Stabilized soil is widely used as road base and sub-base materials, and is sometimes used as covering for waste matter in China. In soil stabilization, the property of a locally available soil are usually modified though chemical stabilization[1]. Cement stabilization and lime stabilization are the two most commonly used methods. Lime-fly ash stabilized soil has been widely applied in road engineering due to its good integrity, great bearing capacity, high stiffness, and water-proofing quality[2-4]. One disadvantage of lime-fly ash stabilized soil is that without any additives, its inherent low initial strength makes it inappropriate for use under low-temperature conditions. Researchers have found that the pozzolanic reactivity among lime, fly ash, and soil contributes to the strength of lime-fly ash stabilized soil. To increase the initial strength of lime-fly ash stabilized soil, many approaches have been used to accelerate the pozzolanic reaction. Sulfate activation is one of the methods that has been widely investigated, specifically, Na2SO4 and CaSO4[5]. PG, another sulfate, has also been investigated. However, existing studies have limited to the investigation of the development of strength of the stabilized soil as road base and sub-base materials. The effect of PG on the durability of stabilized soil has rarely been implicated. This work aims to study the effect of thermally treated PG (400°C) on the properties of durability, in addition to other aspects, of lime-fly ash stabilized soil. Lime-fly ash stabilized soil with different proportions of calcined PG were prepared and cured at normal conditions for 7 d and 28 d. Mass loss and strength loss under different treatments were determined. X-ray diffraction(XRD) patterns and scanning electron microscopy(SEM) photos were examined to gauge whether improvements in the performances of the stabilized soil can be obtained by use of thermally treated PG.


Sign in / Sign up

Export Citation Format

Share Document