Durability of Lime-Fly Ash Stabilized Soil Activated by Calcined Phosphogypsum

2010 ◽  
Vol 168-170 ◽  
pp. 133-138
Author(s):  
Min Yang ◽  
Yan Xie ◽  
Ying Pang

Stabilized soil is widely used as road base and sub-base materials, and is sometimes used as covering for waste matter in China. In soil stabilization, the property of a locally available soil are usually modified though chemical stabilization[1]. Cement stabilization and lime stabilization are the two most commonly used methods. Lime-fly ash stabilized soil has been widely applied in road engineering due to its good integrity, great bearing capacity, high stiffness, and water-proofing quality[2-4]. One disadvantage of lime-fly ash stabilized soil is that without any additives, its inherent low initial strength makes it inappropriate for use under low-temperature conditions. Researchers have found that the pozzolanic reactivity among lime, fly ash, and soil contributes to the strength of lime-fly ash stabilized soil. To increase the initial strength of lime-fly ash stabilized soil, many approaches have been used to accelerate the pozzolanic reaction. Sulfate activation is one of the methods that has been widely investigated, specifically, Na2SO4 and CaSO4[5]. PG, another sulfate, has also been investigated. However, existing studies have limited to the investigation of the development of strength of the stabilized soil as road base and sub-base materials. The effect of PG on the durability of stabilized soil has rarely been implicated. This work aims to study the effect of thermally treated PG (400°C) on the properties of durability, in addition to other aspects, of lime-fly ash stabilized soil. Lime-fly ash stabilized soil with different proportions of calcined PG were prepared and cured at normal conditions for 7 d and 28 d. Mass loss and strength loss under different treatments were determined. X-ray diffraction(XRD) patterns and scanning electron microscopy(SEM) photos were examined to gauge whether improvements in the performances of the stabilized soil can be obtained by use of thermally treated PG.

2011 ◽  
Vol 250-253 ◽  
pp. 755-760
Author(s):  
Dong Xing Wang ◽  
Rachid Zentar ◽  
Nor Edine Abriak ◽  
Wei Ya Xu

Traditional approaches such as ocean dumping and inland deposit are unsatisfactory for the management of dredged sediments, in the context of sustainable development. The solidified sediments with fly ash and lime as road base materials are preferred to conserve land and minimize impact to environment. A series of tests, such as compaction tests, tensile strength tests and swell tests, were performed to explore mechanical and swell properties of Dunkirk dredged materials. The fly ash contributes to the considerable increase in elastic modulus and the small increase in tensile strength in the presence of lime. Then the potential of treated sediments as road base material is evaluated. After immersion in water for 4 days, the addition of fly ash can induce a remarkable increase in swell percents in contrast with the lime-based sediments.


2021 ◽  
Vol 6 (12) ◽  
pp. 181
Author(s):  
Van-Ngoc Pham ◽  
Erwin Oh ◽  
Dominic E. L. Ong

The study aims to develop a reliable model using gene-expression programming (GEP) technique for estimating the unconfined compressive strength (UCS) of soil stabilization by cement and fly ash. The model considered the effects of several parameters, including the fly ash characteristics such as calcium oxide (CaO) content, CaO/SiO2 ratio, and loss of ignition. The research results show that the proposed model demonstrates superior performance with a high correlation coefficient (R > 0.955) and low errors. Therefore, the model could be confidently applied in practice for a variety of fly ash qualities. Besides, the parametric study was conducted to examine the effect of fly ash characteristics on the strength of soil stabilization. The study indicates that if the fly ash contains a high amount of calcium oxide, the strength of fly ash stabilized soil is significant. In addition, fly ash could be used in combination with cement to increase the strength of the mixture. A fly ash replacement ratio is suggested from 0.19 to 0.35, corresponding to the total binder used from 10% to 30%. The research findings could help engineers in optimizing the fly ash proportion and estimating the UCS of soil stabilization by cement and fly ash.


2021 ◽  
Vol 284 ◽  
pp. 124777
Author(s):  
Yong Li ◽  
Xiaoming Liu ◽  
Zepeng Li ◽  
Yongyu Ren ◽  
Yaguang Wang ◽  
...  
Keyword(s):  
Fly Ash ◽  
Red Mud ◽  

2012 ◽  
Vol 174-177 ◽  
pp. 676-680
Author(s):  
Fang Xu ◽  
Ming Kai Zhou ◽  
Jian Ping Chen

The unconfined compressive strength is used to be the valuation index, the mechanical performance of three kinds of new road base material, which are fly ash stabilized steel slag sand (FA-SS for short), lime and fly ash stabilized steel slag sand (L-FA-SS for short), cement and fly ash stabilized steel slag sand(C-FA-SS for short), are studied in this paper. The results show that the unconfined compressive strength performance of FA-SS is similar to L-FA-SS, and it can meet the highest strength when the ratio of steel slag to fly ash is 1:1~2:1. When the ratio of fly ash to the steel slag is 10:90, it is good to use cement stabilizing. Comparing the new road base materials with the traditional road base material, the former has better strength performance and economy function advantage.


2014 ◽  
Vol 41 (5) ◽  
pp. 396-402 ◽  
Author(s):  
Seong-Soo Kim ◽  
R. Doug Hooton ◽  
Tae-Jun Cho ◽  
Jeong-Bae Lee

This report is an experimental study on the nano-powdering of fly ash and the improvement of cement performance by nano fly ash. Mortars with nano fly ash or nano-silica produced by a physical method are compared with mortar without a nano-binder. Mortar with nano-silica showed rapid setting. However, mortar with fly ash or nano fly ash exhibited delayed setting. The smaller the particle sizes, the higher is the compressive strength, demonstrating that mortar with nano fly ash shows superior performance with higher compressive strength from the beginning. Durability assessments revealed that chloride penetration resistance increased by 70% for mortar with nano fly ash or nano-silica. This shows that mortar with a smaller particle binder has excellent carbonation resistance. Nano-powdering effectively enhances the activation of a pozzolanic reaction and provides densely charged effects. These changes solve the problem of initial strength reduction — the greatest weakness of fly ash.


2018 ◽  
Vol 156 ◽  
pp. 05017 ◽  
Author(s):  
April Anne S. Tigue ◽  
Jonathan R. Dungca ◽  
Hirofumi Hinode ◽  
Winarto Kurniawan ◽  
Michael Angelo B. Promentilla

A novel approach one-part geopolymer was employed to investigate the feasibility of enhancing the strength of in-situ soil for possible structural fill application in the construction industry. Geopolymer precursors such as fly ash and volcanic ash were utilized in this study for soil stabilization. The traditional geopolymer synthesis uses soluble alkali activators unlike in the case of ordinary Portland cement where only water is added to start the hydration process. This kind of synthesis is an impediment to geopolymer soil stabilizer commercial viability. Hence, solid alkali activators such as sodium silicate (SS), sodium hydroxide (SH), and sodium aluminate (SA) were explored. The influence of amount of fly ash (15% and 25%), addition of volcanic ash (0% and 12.5%), and ratio of alkali activator SS:SH:SA (50:50:0, 33:33:33, 50:20:30) were investigated. Samples cured for 28 days were tested for unconfined compressive strength (UCS). To evaluate the durability, sample yielding highest UCS was subjected to sulfuric acid resistance test for 28 days. Analytical techniques such as X-ray fluorescence (XRF), X-ray diffraction (XRD), and scanning electron microscope/energy-dispersive X-ray spectroscopy (SEM/EDX) were performed to examine the elemental composition, mineralogical properties, and microstructure of the precursors and the geopolymer stabilized soil.


2020 ◽  
Vol 195 ◽  
pp. 06001
Author(s):  
Canan Turan ◽  
Akbar Javadi ◽  
Raffaele Vinai ◽  
Nader Shariatmadari ◽  
Raziyeh Farmani

Fine-grained soils may have undesired characteristics such as high swelling potential and low strength, thus requiring improvements. One of the stabilization methods involves the use of fly ash. Fly ash is a waste material obtained from burning coal in thermal power plants. The use of fly ash is encouraged as an alternative material for soil stabilization, due to its features such as pozzolanic properties and economic availability. This paper describes the results of an experimental study on stabilization of a clayey soil with fly ash. Unconfined compressive strength (UCS), triaxial and consolidation tests were carried out on samples of kaolinite mixed with class C fly ash at different percentages and cured for 1, 7, and 28 days, in order to study the effects of class C fly ash on the mechanical behaviour of the stabilized soil. The results showed that the inclusion of fly ash significantly improves the strength characteristics of the soil. Curing time was also found to have a significant effect on improving the properties of the soil.


2018 ◽  
Vol 760 ◽  
pp. 171-175
Author(s):  
Martin Lidmila ◽  
Marcel Jogl ◽  
Wojciech Kubissa ◽  
Roman Jaskulski ◽  
Pavel Reiterman

Paper deals with the assessment of practical utilization of granulated cable plastic waste (GCPW) for the production of stabilized soil layers in transport engineering. The main goal of the experimental work was the evaluation of the influence of GCPW on mechanical properties of soil stabilization based on the fluidized fly ash. Mechanical properties were investigated using standard procedures in soil mechanics. GCPW was dosed as a partial replacement of fluidized fly ash up to 30 %. It was concluded, that the studied level of replacement performs critical level, additional increasing of GCPW would lead to a decline of required mechanical properties. Besides, replacement by studied waste material caused lower values of the bulk density.


Sign in / Sign up

Export Citation Format

Share Document