scholarly journals Role of Geoinformation Expert System in Tasks of Interpretation of Aerospace Information

2021 ◽  
Author(s):  
Khosiiat Radzhabovna Ismatova

The article deals with the problem of increasing the efficiency of processing and interpretation of aerospace information. For this purpose, it is proposed to use artificial intelligence methods such as pattern recognition, neural expert systems, geoinformation technologies. Using the example of constructing a geoinformation expert system for assessing the suitability of lands, a method is shown for integrating a set of data and technologies to reduce time and increase the reliability of interpretation of the results of processing satellite information.

2020 ◽  
Vol 1 (2) ◽  
pp. 26
Author(s):  
Rosyid Ridlo Al Hakim ◽  
Erfan Rusdi ◽  
Muhammad Akbar Setiawan

Since being confirmed by WHO, the status of COVID-19 outbreak has become a global pandemic, the number of cases has been confirmed positive, cured, and even death worldwide. Artificial intelligence in the medical has given rise to expert systems that can replace the role of experts (doctors). Tools to detect someone affected by COVID-19 have not been widely applied in all regions. Banyumas Regency, Indonesia is included confirmed region of COVID-19 cases, and it’s difficult for someone to know the symptoms that are felt whether these symptoms include indications of someone ODP, PDP, positive, or negative COVID-19, and still at least a referral hospital handling COVID-19. Expert system with certainty factor can help someone make a self-diagnose whether including ODP, PDP, positive, or negative COVID-19. This expert system provides ODP diagnostic results with a confidence level of 99.96%, PDP 99.99790%, positive 99.9999997%, negative 99.760384%, and the application runs well on Android OS


2006 ◽  
Vol 28 (1) ◽  
pp. 5-9 ◽  
Author(s):  
Denise Razzouk ◽  
Jair de Jesus Mari ◽  
Itiro Shirakawa ◽  
Jacques Wainer ◽  
Daniel Sigulem

OBJETIVE: Research on clinical reasoning has been useful in developing expert systems. These tools are based on Artificial Intelligence techniques which assist the physician in the diagnosis of complex diseases. The development of these systems is based on a cognitive model extracted through the identification of the clinical reasoning patterns applied by experts within the clinical decision-making context. This study describes the method of knowledge acquisition for the identification of the triggering symptoms used in the reasoning of three experts for the diagnosis of schizophrenia. METHOD: Three experts on schizophrenia, from two University centers in Sao Paulo, were interviewed and asked to identify and to represent the triggering symptoms for the diagnosis of schizophrenia according to the graph methodology. RESULTS: Graph methodology showed a remarkable disagreement on how the three experts established their diagnosis of schizophrenia. They differed in their choice of triggering-symptoms for the diagnosis of schizophrenia: disorganization, blunted affect and thought disturbances. CONCLUSIONS: The results indicate substantial differences between the experts as to their diagnostic reasoning patterns, probably under the influence of different theoretical tendencies. The disorganization symptom was considered to be the more appropriate to represent the heterogeneity of schizophrenia and also, to further develop an expert system for the diagnosis of schizophrenia.


Author(s):  
Siti Nurhena ◽  
Nelly Astuti Hasibuan ◽  
Kurnia Ulfa

The diagnosis process is the first step to knowing a type of disease. This type of disease caused by mosquitoes is one of the major viruses (MAVY), dengue hemorrhagic fever (DHF) and malaria. Sometimes not everyone can find the virus that is carried by this mosquito, usually children who are susceptible to this virus because the immune system that has not been built perfectly is perfect. To know for sure which virus is infected by mosquitoes, it can diagnose by seeing symptoms perceived symptoms. Expert systems are one of the most used artificial intelligence techniques today because expert systems can act as consultations. In this case the authors make a system to start a diagnosis process with variable centered intelligent rule system (VCIRS) methods through perceived symptoms. With the facilities provided for users and administrators, allowing both users and administrators to use this system according to their individual needs. This expert system is made with the Microsoft Visual Basic 2008 programming language.Keywords: Expert System, Mayora Virus, Variable Centered Intelligent Rule System (VCIRS)The diagnosis process is the first step to knowing a type of disease. This type of disease caused by mosquitoes is one of the major viruses (MAVY), dengue hemorrhagic fever (DHF) and malaria. Sometimes not everyone can find the virus that is carried by this mosquito, usually children who are susceptible to this virus because the immune system that has not been built perfectly is perfect. To know for sure which virus is infected by mosquitoes, it can diagnose by seeing symptoms perceived symptoms.Expert systems are one of the most used artificial intelligence techniques today because expert systems can act as consultations. In this case the authors make a system to start a diagnosis process with variable centered intelligent rule system (VCIRS) methods through perceived symptoms.With the facilities provided for users and administrators, allowing both users and administrators to use this system according to their individual needs. This expert system is made with the Microsoft Visual Basic 2008 programming language.Keywords: Expert System, Mayora Virus, Variable Centered Intelligent Rule System (VCIRS)


1991 ◽  
Vol 6 (4) ◽  
pp. 307-333 ◽  
Author(s):  
G. Kalkanis ◽  
G. V. Conroy

AbstractThis paper presents a survey of machine induction, studied mainly from the field of artificial intelligence, but also from the fields of pattern recognition and cognitive psychology. The paper consists of two parts: Part I discusses the basic principles and features of the machine induction process; Part II uses these principles and features to review and criticize the major supervised attribute-based induction methods. Attribute-based induction has been chosen because it is the most commonly used inductive approach in the development of expert systems and pattern recognition models.


Author(s):  
Syahrizal Dwi Putra ◽  
M Bahrul Ulum ◽  
Diah Aryani

An expert system which is part of artificial intelligence is a computer system that is able to imitate the reasoning of an expert with certain expertise. An expert system in the form of software can replace the role of an expert (human) in the decision-making process based on the symptoms given to a certain level of certainty. This study raises the problem that many women experience, namely not understanding that they have uterine myomas. Many women do not understand and are not aware that there are already symptoms that are felt and these symptoms are symptoms of the presence of uterine myomas in their bodies. Therefore, it is necessary for women to be able to diagnose independently so that they can take treatment as quickly as possible. In this study, the expert will first provide the expert CF values. Then the user / respondent gives an assessment of his condition with the CF User values. In the end, the values obtained from these two factors will be processed using the certainty factor formula. Users must provide answers to all questions given by the system in accordance with their current conditions. After all the conditions asked are answered, the system will display the results to identify that the user is suffering from uterine myoma disease or not. The Expert System with the certainty factor method was tested with a patient who entered the symptoms experienced and got the percentage of confidence in uterine myomas/fibroids of 98.70%. These results indicate that an expert system with the certainty factor method can be used to assist in diagnosing uterine myomas as early as possible.


2018 ◽  
Vol 1 (2) ◽  
Author(s):  
Amit K. Sinha 1 ◽  
Andrew J. Jacob 2

Expert systems, a type of artificial intelligence that replicate how experts think, can aide unskilled users in making decisions or apply an expert’s thought process to a sample much larger than could be examined by a human expert. In this paper, an expert system that ranks financial securities using fuzzy membership functions is developed and applied to form portfolios. Our results indicate that this approach to form stock portfolios can result in superior returns than the market as measured by the return on the S&P 500. These portfolios may also provide superior risk-adjusted returns when compared to the market.


2021 ◽  
Author(s):  
Oleg Varlamov

Methodological and applied issues of the basics of creating knowledge bases and expert systems of logical artificial intelligence are considered. The software package "MIV Expert Systems Designer" (KESMI) Wi!Mi RAZUMATOR" (version 2.1), which is a convenient tool for the development of intelligent information systems. Examples of creating mivar expert systems and several laboratory works are given. The reader, having studied this tutorial, will be able to independently create expert systems based on KESMI. The textbook in the field of training "Computer Science and Computer Engineering" is intended for students, bachelors, undergraduates, postgraduates studying artificial intelligence methods used in information processing and management systems, as well as for users and specialists who create mivar knowledge models, expert systems, automated control systems and decision support systems. Keywords: cybernetics, artificial intelligence, mivar, mivar networks, databases, data models, expert system, intelligent systems, multidimensional open epistemological active network, MOGAN, MIPRA, KESMI, Wi!Mi, Razumator, knowledge bases, knowledge graphs, knowledge networks, Big knowledge, products, logical inference, decision support systems, decision-making systems, autonomous robots, recommendation systems, universal knowledge tools, expert system designers, logical artificial intelligence.


2021 ◽  
Author(s):  
Oleg Varlamov

The multidimensional open epistemological active network MOGAN is the basis for the transition to a qualitatively new level of creating logical artificial intelligence. Mivar databases and rules became the foundation for the creation of MOGAN. The results of the analysis and generalization of data representation structures of various data models are presented: from relational to "Entity — Relationship" (ER-model). On the basis of this generalization, a new model of data and rules is created: the mivar information space "Thing-Property-Relation". The logic-computational processing of data in this new model of data and rules is shown, which has linear computational complexity relative to the number of rules. MOGAN is a development of Rule - Based Systems and allows you to quickly and easily design algorithms and work with logical reasoning in the "If..., Then..." format. An example of creating a mivar expert system for solving problems in the model area "Geometry"is given. Mivar databases and rules can be used to model cause-and-effect relationships in different subject areas and to create knowledge bases of new-generation applied artificial intelligence systems and real-time mivar expert systems with the transition to"Big Knowledge". The textbook in the field of training "Computer Science and Computer Engineering" is intended for students, bachelors, undergraduates, postgraduates studying artificial intelligence methods used in information processing and management systems, as well as for users and specialists who create mivar knowledge models, expert systems, automated control systems and decision support systems. Keywords: cybernetics, artificial intelligence, mivar, mivar networks, databases, data models, expert system, intelligent systems, multidimensional open epistemological active network, MOGAN, MIPRA, KESMI, Wi!Mi, Razumator, knowledge bases, knowledge graphs, knowledge networks, Big knowledge, products, logical inference, decision support systems, decision-making systems, autonomous robots, recommendation systems, universal knowledge tools, expert system designers, logical artificial intelligence.


2019 ◽  
Vol 28 (01) ◽  
pp. 027-034 ◽  
Author(s):  
Laszlo Balkanyi ◽  
Ronald Cornet

Introduction: Artificial intelligence (AI) is widespread in many areas, including medicine. However, it is unclear what exactly AI encompasses. This paper aims to provide an improved understanding of medical AI and its constituent fields, and their interplay with knowledge representation (KR). Methods: We followed a Wittgensteinian approach (“meaning by usage”) applied to content metadata labels, using the Medical Subject Headings (MeSH) thesaurus to classify the field. To understand and characterize medical AI and the role of KR, we analyzed: (1) the proportion of papers in MEDLINE related to KR and various AI fields; (2) the interplay among KR and AI fields and overlaps among the AI fields; (3) interconnectedness of fields; and (4) phrase frequency and collocation based on a corpus of abstracts. Results: Data from over eighty thousand papers showed a steep, six-fold surge in the last 30 years. This growth happened in an escalating and cascading way. A corpus of 246,308 total words containing 21,842 unique words showed several hundred occurrences of notions such as robotics, fuzzy logic, neural networks, machine learning and expert systems in the phrase frequency analysis. Collocation analysis shows that fuzzy logic seems to be the most often collocated notion. Neural networks and machine learning are also used in the conceptual neighborhood of KR. Robotics is more isolated. Conclusions: Authors note an escalation of published AI studies in medicine. Knowledge representation is one of the smaller areas, but also the most interconnected, and provides a common cognitive layer for other areas.


1993 ◽  
Author(s):  
Hong Cao ◽  
Mei Ma

DIAG, a diagnostic expert system for oil systems of aeroengines, is presented in this paper. Using artificial intelligence, DIAG, which simulates the role of human experts in solving problems, can solve the complicated problems in diagnosing the faults and failures of oil systems of gas turbine engines. The paper concentrates on the design of DIAG as well as the process of handling the complex relation and uncertainty of problems. It also includes graphic subsystem and data subsystem. It is affirmed by the expected goal of diagnosing the faults and failures of oil system and engine of CFM56 engine on Boeing 737–300 airplane.


Sign in / Sign up

Export Citation Format

Share Document