The effect of temperature on the fluid flow dynamics in technical systems with jets

2016 ◽  
Vol 11 (1) ◽  
pp. 1-9 ◽  
Author(s):  
I.Sh. Nasibullayev ◽  
E.Sh. Nasibullaeva

In this paper the steady flow of technical fluid induced pressure drop in the channel with a cylindrical jet for the entire working temperature range have been studied. The Navier–Stokes equations are solved numerically in axially symmetric geometry by the finite element method. The temperature dependence of the material parameters of a number of liquids, most commonly used in technical devices have been obtained. A model of a cylindrical jet was built in the form of a computing element of the stand, which takes into account the pressure drop, the radius of passage opening jet and the liquid temperature for the areas with low and high pressure drops. This model allows without significant loss of accuracy replace the complete numerical simulation, requires more computational resources, by simple analytical formulas admitting modeling in computational stand in real time. The model can be used in various technical applications of microelectromechanical systems (at low pressure drops) to the fuel metering elements (at high pressures drops).

2011 ◽  
Vol 55-57 ◽  
pp. 343-347 ◽  
Author(s):  
Yi Gang Luan ◽  
Hai Ou Sun

In this article, computational fluid dynamics(CFD) method is used to predict the effect of blade numbers on the pressure drop of axial cyclone separators. A three-dimensional model is built to acquire the resistance of axial cyclone separators with different blade numbers. The flow field inside cyclone separators is calculated using 3D Reynolds-averaged Navier-Stokes equations. And turbulence model is used to simulate the Reynold stress. Also pressure drop of cyclone separators with different blade numbers is expressed as a function of different inlet velocities. At the same inlet velocity with increasing the blade numbers, pressure drops of cyclones reduce greatly. And changing the blade number of cyclone separator is an effective method to improve its resistance performance.


Author(s):  
Shakhawat Hossain ◽  
Mubashshir Ahmad Ansari ◽  
Kwang-Yong Kim

This work presents a numerical investigation on mixing and flow structures in microchannels with different geometries: zig-zag; square-wave; and curved. To conduct the investigation, geometric parameters, such as the area of the cross-section of channel, height of the channel, axial length of the channel, and number of pitches, are kept constant for all three cases. Analyses of mixing and flow fields have been carried out for a wide range 0.267 to 267 of the Reynolds number. Mixing in the channels has been analyzed by using Navier-Stokes equations with two working fluids, water and ethanol. The results show that the square-wave microchannel yields the best mixing performance, and the curved and the zig-zag microchannels show nearly the same performance for most Reynolds numbers. For all three cases, the pressure drop has been calculated for channels with equal streamwise-lengths. The curved channel exhibits the smallest pressure drop among the microchannels, while the pressure drops in the square-wave and zigzag channels are approximately the same.


2000 ◽  
Author(s):  
B. V. Rathish Kumar ◽  
T. Yamaguchi ◽  
H. Liu ◽  
R. Himeno

Abstract Unsteady flow dynamics in a doubly constricted vessel is analyzed by using a time accurate Finite Volume solution of three dimensional incompressible Navier-Stokes equations. Computational experiments are carried out for various values of Reynolds number in order to assess the criticality of multiple mild constrictions in series and also to bring out the subtle 3D features like vortex formation. Studies reveal that pressure drop across a series of mild constrictions can get physiologically critical. Further this pressure drop is found to be sensitive to the spacing between the constrictions and also to the oscillatory nature of the inflow profile.


1968 ◽  
Vol 90 (2) ◽  
pp. 248-254 ◽  
Author(s):  
D. F. Young

A common occurrence in the arterial system is the narrowing of arteries due to the development of atherosclerotic plaques or other types of abnormal tissue development. As these growths project into the lumen of the artery, the flow is disturbed and there develops a potential coupling between the growth and the blood flow through the artery. A discussion of the various possible consequences of this interaction is given. It is noted that very small growths leading to mild stenotic obstructions, although not altering the gross flow characteristics significantly, may be important in triggering biological mechanisms such as intimal cell proliferation or changes in vessel caliber. An analysis of the effect of an axially symmetric, time-dependent growth into the lumen of a tube of constant cross section through which a Newtonian fluid is steadily flowing is presented. This analysis is based on a simplified model in which the convective acceleration terms in the Navier-Stokes equations are neglected. Effect of growth on pressure distribution and wall shearing stress is given and possible biological implications are discussed.


Author(s):  
F. J. Hong ◽  
P. Cheng ◽  
H. Ge ◽  
Teck Joo Goh

In this paper, a numerical simulation is carried to study pressure drop and heat transfer in a fractal tree-like microchannel net heat sink of 10mm×12.5mm×0.5mm in dimensions. The numerical result is obtained by solving three-dimensional Navier-Stokes equations and energy equation, taking into consideration conjugate heat transfer in the microchannel walls. A comparison of fractal tree-like microchannel net heat sink with 6 branch levels to parallel microchannels heat sink, with respect to the pressure drop, thermal resistance and temperature uniformity, was also performed under the condition of the same heat sink dimensions. The results indicates that for a mass flow rate of water less than 0.00175kg/s, the fractal tree-like microchannel is much better than parallel channel heat sink with respect to all of three aspects. Therefore, the fractal tree-like microchannels net heat sink using water as the coolant is promising to be used in the future electronic cooling industry.


Sign in / Sign up

Export Citation Format

Share Document