scholarly journals PHYSICO–CHEMICAL CHARACTERISTICS AND WASTEWATER QUALITY INDEX FOR EVALUATING THE EFFICIENCY OF TREATMENT PROCESS EFFLUENT

2018 ◽  
Author(s):  
Florinela Pirvu ◽  
◽  
Jana Petre ◽  
Liliana Cruceru ◽  
Iuliana Paun ◽  
...  
2016 ◽  
Vol 12 (3) ◽  
pp. 4383-4393
Author(s):  
Osabuohien Idehen

This study takes a look into groundwater quality at Ugbor Dumpsite area using water quality index (WQI), 2-Dimensional (2-D) geophysical resistivity tomography and vertical electric sounding (VES).The geophysical resistivity methods employed revealed the depth to aquifer, the geoelectric layers being made up of lateritic topsoil, clayed sand and sand. Along the trasverse line in the third geoelectric layer of lateral distance of 76 m to 100 m is a very low resistivity of 0.9 to 13 m from a depth range o f about 3 to 25 m beneath the surface- indicating contamination. Water samples were collected and analyzed at the same site during the raining season and during the dry season. The value of water quality index during the raining season was 115.92 and during the dry season was 147.43. Since values at both seasons were more than 100, it implies that the water is contaminated to some extent and therefore poor for drinking purpose. The Water Quality Index was established from important analyses of biological and physico-chemical parameters with significant health importance. These values computed for dumpsite area at Ugbor were mostly contributed by the seasonal variations in the concentrations of some parameters, such as, conductivity, total dissolved solids, hardness, alkalinity, chlorides, nitrates, calcium,  phosphates, zinc, which showed significant differences (P<0.01 and P<0.05) in seasonal variation.


2019 ◽  
Vol 70 (7) ◽  
pp. 2534-2537
Author(s):  
Gladiola Tantaru ◽  
Mihai Apostu ◽  
Antonia Poiata ◽  
Mihai Nichifor ◽  
Nela Bibire ◽  
...  

The paper presents the synthesis of a new complex combination of a Bis-Schiff base with Mn(II) ions with great potential for antimicrobial and anti-inflammatory activity. A new complex of the Salen-type ligand, 1-ethyl-salicylidene-bis-ethylene diamine was synthetized using Mn(II) ions. The chemical structure was confirmed through 1H-NMR and IR spectroscopy. The antimicrobial activities of the Bis-Schiff base and its complex were tested in comparison with Ampicillin, Chloramphenicol, Tetracycline, Ofloxacin and Nystatin. Those compounds were found to be active against Gram-positive or Gram-negative bacteria, and had an anti-inflammatory effect comparable to that of Indomethacin.


2020 ◽  
Vol 16 (5) ◽  
pp. 685-707 ◽  
Author(s):  
Amna Batool ◽  
Farid Menaa ◽  
Bushra Uzair ◽  
Barkat Ali Khan ◽  
Bouzid Menaa

: The pace at which nanotheranostic technology for human disease is evolving has accelerated exponentially over the past five years. Nanotechnology is committed to utilizing the intrinsic properties of materials and structures at submicroscopic-scale measures. Indeed, there is generally a profound influence of reducing physical dimensions of particulates and devices on their physico-chemical characteristics, biological properties, and performance. The exploration of nature’s components to work effectively as nanoscaffolds or nanodevices represents a tremendous and growing interest in medicine for various applications (e.g., biosensing, tunable control and targeted drug release, tissue engineering). Several nanotheranostic approaches (i.e., diagnostic plus therapeutic using nanoscale) conferring unique features are constantly progressing and overcoming all the limitations of conventional medicines including specificity, efficacy, solubility, sensitivity, biodegradability, biocompatibility, stability, interactions at subcellular levels. : This review introduces two major aspects of nanotechnology as an innovative and challenging theranostic strategy or solution: (i) the most intriguing (bare and functionalized) nanomaterials with their respective advantages and drawbacks; (ii) the current and promising multifunctional “smart” nanodevices.


Sign in / Sign up

Export Citation Format

Share Document