scholarly journals Developing a High Thermal Conductivity Fuel with Silicon Carbide Additives

2012 ◽  
Author(s):  
Ronald baney ◽  
James Tulenko
2013 ◽  
Vol 795 ◽  
pp. 237-240
Author(s):  
K. Azmi ◽  
M.N. Derman ◽  
Mohd Mustafa Al Bakri Abdullah

The demand for advanced thermal management materials such as silicon carbide reinforced copper matrix (Cu-SiCp) composites is increasing due to their high thermal conductivity and low CTE properties. However, the weak bonding between the copper matrix and the SiCp reinforcement degrades the thermophysical properties of the composites. In order to improve the bonding between the two constituents, the SiCp were copper coated (Cu-Coated) via electroless coating process. Based on the experimental results, the CTE values of the Cu-Coated Cu-SiCp composites were found significantly lower than those of the non-Coated Cu-SiCp composites. The CTEs of the Cu-Coated Cu-SiCp composites were in agreement with Kernels model which accounts for both the shear and isostatic stresses developed in the component phases.


RSC Advances ◽  
2017 ◽  
Vol 7 (73) ◽  
pp. 46306-46312 ◽  
Author(s):  
Na Song ◽  
Haidong Pan ◽  
Xingshuang Hou ◽  
Siqi Cui ◽  
Liyi Shi ◽  
...  

It is urgent to manufacture a polymer composite that has high thermal conductivity (especially in the through-plane direction) and mechanical properties simultaneously to meet the heat dissipation requirement of electronic devices.


2015 ◽  
Vol 825-826 ◽  
pp. 189-196 ◽  
Author(s):  
Maren Klement ◽  
Alwin Nagel ◽  
Oliver Lott

Composites with interpenetrating metal-ceramic microstructures (IPC, interpenetrating composites) can be tailored for specific applications, such as high thermal conductivity combined with low thermal expansion, e.g. for heat sinks. Heat sinks are required in power electronic devices or in future fusion reactor technology where extreme conditions and high cyclic thermo-mechanical loads appear. Due to its rigid ceramic backbone IPCs are expected to reveal high thermal stability. Pure silicon carbide exhibits high thermal conductivity, low coefficient of thermal expansion, high corrosion and wear resistance. But it is also known as a very brittle material when mechanical loads are applied. Thus a composite of silicon carbide with ductile and highly conductive copper seems to be a promising new material for a number of applications.This paper reports the synthesis of Cu-SiC composites using a unique high temperature squeeze casting process (HTSC). Microstructural design of SiC-preforms with open porosity and its synthesis progress is reported. Influence of preform properties, temperature, pressure and atmosphere during HTSC were investigated. A qualitative and quantitative description of the microstructure of the composites and their composition allows the creation of structure-property correlations that take effect retroactively to the casting process.


2017 ◽  
Vol 4 (17) ◽  
pp. 1700446 ◽  
Author(s):  
Yun Huang ◽  
Jiantao Hu ◽  
Yimin Yao ◽  
Xiaoliang Zeng ◽  
Jiajia Sun ◽  
...  

1990 ◽  
Vol 110 (7) ◽  
pp. 22-30
Author(s):  
Morinobu Endo ◽  
Yoshinobu Sugihira ◽  
Nobuaki Urasato ◽  
Akira Hayashida

Sign in / Sign up

Export Citation Format

Share Document