scholarly journals The Contribution of Environmental Siting and Permitting Requirements to the Cost of Energy for Ocean Current Devices - Reference Model #4

2013 ◽  
Author(s):  
Andrea E. Copping ◽  
Simon H. Geerlofs ◽  
Luke A. Hanna
2015 ◽  
Vol 9 (1) ◽  
pp. 2303-2310
Author(s):  
Abderrahim Benchaib ◽  
Abdesselam Mdaa ◽  
Izeddine Zorkani ◽  
Anouar Jorio

The vanadium dioxide VO₂ currently became very motivating for the nanotechnologies’ researchers. It makes party of the intelligent materials because these optical properties abruptly change semiconductor state with metal at a critical  temperature θ = 68°C. This transition from reversible phase is carried out from a monoclinical structure characterizing its semiconductor state at low temperature towards the metal state of this material which becomes tétragonal rutile for  θ ˃ 68°C ; it is done during a few nanoseconds. Several studies were made on this material in a massive state and a thin layer. We will simulate by Maple the constant optics of a thin layer of VO₂ thickness z = 82 nm for the metal state according to the energy ω of the incidental photons in the energy interval: 0.001242 ≤ ω(ev) ≤ 6, from the infra-red (I.R) to the ultra-violet (U.V) so as to be able to control the various technological nano applications, like the detectors I.R or the U.V,  the intelligent windows to  increase  the energy efficiency in the buildings in order to save the cost of energy consumption by electric air-conditioning and the paintings containing nano crystals of this material. The constant optics, which we will simulate, is: the index of refraction, the reflectivity, the transmittivity, the coefficient of extinction, the dielectric functions ԑ₁ real part and  ԑ₂  imaginary part of the permittivity complexes ԑ of this material and the coefficient absorption. 


1980 ◽  
Vol 7 (2) ◽  
pp. 256-263 ◽  
Author(s):  
M. A. Ward ◽  
S. M. Khalil ◽  
B. W. Langan

As the cost of energy and hence the cost of producing Portland cement increase, the question arises as to whether we are obtaining optimum performance from the admixtures we use. As an example, data are presented indicating that a significant improvement in strength and shrinkage can be achieved by optimizing the sulfate content of the cement for given cement–admixture combinations. It is shown that the optimum SO3 is clearly a function of the initial temperature of the concrete, particularly during the first 24 h after casting, a characteristic of considerable importance in hot weather concreting and steam curing of concrete products. It is recommended that more attention be directed towards optimizing the effectiveness of chemical admixtures in both the ready-mixed concrete and precast concrete industries.


Author(s):  
Jake Barker ◽  
Bo Xia ◽  
George Zillante

There is a growing demand for sustainable retirement villages in Australia due to an increasing number of ageing population and public acceptance of sustainable development. This research aims to gain a better understanding of retirees’ understanding about sustainable retirement living and their attitudes towards sustainable developments via a questionnaire survey approach. The results showed that the current residents of retirement villages are generally very conscious of unsustainable resource consumption and would like their residences and community to be more environmentally friendly and energy efficient. The cost of energy supply is a concern to majority of respondents. However there is a certain level of concerns from residents too on the extra cost of going green in their residence. Education is required to residents about recycling household waste and how to use available facilities. A better understanding of retirees’ awareness and attitudes towards sustainability issues helps to improve the sustainable developments of retirement villages in the future.


2013 ◽  
Vol 64 (2) ◽  
pp. 76-83
Author(s):  
Hamed Hashemi-Dezaki ◽  
Ali Agheli ◽  
Behrooz Vahidi ◽  
Hossein Askarian-Abyaneh

The use of distributed generations (DGs) in distribution systems has been common in recent years. Some DGs work stand alone and it is possible to improve the system reliability by connecting these DGs to system. The joint point of DGs is an important parameter in the system designing. In this paper, a novel methodology is proposed to find the optimum solution in order to make a proper decision about DGs connection. In the proposed method, a novel objective function is introduced which includes the cost of connector lines between DGs and network and the cost of energy not supplied (CENS) savings. Furthermore, an analytical approach is used to calculate the CENS decrement. To solve the introduced nonlinear optimization programming, the genetic algorithm (GA) is used. The proposed method is applied to a realistic 183-bus system of Tehran Regional Electrical Company (TREC). The results illustrate the effectiveness of the method to improve the system reliability by connecting the DGs work stand alone in proper placements.


2018 ◽  
Vol 8 (5) ◽  
pp. 3421-3426 ◽  
Author(s):  
F. Chermat ◽  
M. Khemliche ◽  
A. E. Badoud ◽  
S. Latreche

This work aims to consider the combination of different technologies regarding energy production and management with four possible configurations. We present an energy management algorithm to detect the best design and the best configuration from the combination of different sources. This combination allows us to produce the necessary electrical energy for supplying habitation without interruption. A comparative study is conducted among the different combinations on the basis of the cost of energy, diesel consumption, diesel price, capital cost, replacement cost, operation, and maintenance cost and greenhouse gas emission. Sensitivity analysis is also performed.


2021 ◽  
Vol 6 ◽  
pp. 41
Author(s):  
Hussein A. Kazem ◽  
Anas Quteishat ◽  
Mahmoud A. Younis

Solar water pumping systems are fundamental entities for water transmission and storage purposes whether it is has been used in irrigation or residential applications. The use of photovoltaic (PV) panels to support the electrical requirements of these pumping systems has been executed globally for a long time. However, introducing optimization sizing techniques to such systems can benefit the end-user by saving money, energy, and time. This paper proposed solar water pumping systems optimum design for Oman. The design, and evaluation have been carried out through intuitive, and numerical methods. Based on hourly meteorological data, the simulation used both HOMER software and numerical method using MATLAB code to find the optimum design. The selected location ambient temperature variance from 12.8 °C to 44.5 °C over the year and maximum insolation is 7.45 kWh/m2/day, respectively. The simulation results found the average energy generated, annual yield factor, and a capacity factor of the proposed system is 2.9 kWh, 2016.66 kWh/kWp, and 22.97%, respectively, for a 0.81 kW water pump, which is encouraging compared with similar studied systems. The capital cost of the system is worth it, and the cost of energy has compared with other systems in the literature. The comparison shows the cost of energy to be in favor of the MATLAB simulation results with around 0.24 USD/kWh. The results show successful operation and performance parameters, along with cost evaluation, which proves that PV water pumping systems are promising in Oman.


Author(s):  
А.Ю. Боташев ◽  
А.А. Мусаев

Одной из разновидностей устройств, осуществляющих импульсные методы обработки давлением, являются двухкамерные устройства для листовой штамповки, использующие в качестве энергоносителя газовоздушные топливные смеси. Подача сжатого воздуха в камеру сгорания в рассматриваемом двухкамерном устройстве для листовой штамповки осуществляется компрессором. Проведен анализ термодинамических процессов, протекающих в камере сгорания и рабочем цилиндре двухкамерного устройства для листовой штамповки. При этом установлено, что энергия, затрачиваемая на работу компрессора, составляет около 45% от энергии, выделяющейся в камере сгорания. Получена зависимость для определения термодинамического КПД двухкамерных устройств для листовой штамповки, величина его составляет около 0,25. Установлено, что энергоэффективность двухкамерных устройств не уступает энергоэффективности традиционного штамповочного оборудования, при этом затраты на энергоносители двухкамерных устройств ниже за счет использования дешевого энергоносителя. В двухкамерном штамповочном устройстве для листовой штамповки электрическая энергия, используемая на работу компрессора, составляет менее 1/3 общей потребляемой энергии устройства. Поэтому при прочих равных условиях расходы на энергоносители будут значительно меньше, чем в штамповочном оборудовании, работающем на электрическом токе One of the types of devices that carry out pulse methods of pressure treatment are two-chamber devices for sheet stamping, using gas-air fuel mixtures as an energy carrier. The supply of compressed air to the combustion chamber in the considered two-chamber device for sheet stamping is carried out by a compressor. We carried out the analysis of thermodynamic processes taking place in the combustion chamber and the working cylinder of a two-chamber device for sheet stamping. We found that the energy spent on the operation of the compressor is about 45% of the energy released in the combustion chamber. We obtained the dependence for determining the thermodynamic efficiency of two-chamber devices for sheet stamping; its value is about 0.25. We established that the energy efficiency of two-chamber devices is not inferior to the energy efficiency of traditional stamping equipment, while the energy costs of two-chamber devices are lower due to the use of a cheap energy carrier. In a two-chamber die-forging device for sheet metal stamping, the electrical energy used to operate the compressor is less than 1/3 of the total energy consumption of the device. Therefore, all other things being equal, the cost of energy carriers will be significantly less than in stamping equipment operating on electric current


The demand for energy is increasing rapidly and, after a few years, it may surpass the available energy, which may lead the energy providers to increase the cost of energy consumption to compensate the cost for the production. This paper provides design and implementation details of a prototype big data application developed to help large buildings to automatically manage their energy consumption by setting energy consumption targets, collecting periodic energy consumption data, storing the data streams, displaying the energy consumption graphically in real-time, analyzing the consumption patterns, and generating energy consumption graphs and reports. The application is connected to Mongo NoSQL backend database to handle the large and continuously changing data. This big data energy consumption management system is expected to help the users in managing energy consumption by analyzing the patterns to see if it is within or above the desired consumption targets and displaying the data graphically.


Sign in / Sign up

Export Citation Format

Share Document