scholarly journals Considerations for Commercial Building Participation in a Transactive Energy - Additional Information on Commercial Buildings

2019 ◽  
Author(s):  
Sadie R. Bender ◽  
Trevor D. Hardy
2015 ◽  
Vol 4 (4) ◽  
pp. 27
Author(s):  
Wuyi Han

<p>Large commercial building has gradually become the main trend in commercial buildings recently. In current national fire protection design specification, the lacking of targeted measures for the fire protection design on such building will bring obsession to building designers during the specific engineering design, and it can easily lead to non-compliance with national specification. Therefore, we propose relevant state departments to publish state technical standard on fire control against fire protection design of large commercial building. Based on the collected information, data and conducted experiments, standardize the fire protection design of such buildings, will effectively avoiding formation of major fire potential. </p>


2013 ◽  
Vol 357-360 ◽  
pp. 91-94
Author(s):  
Jia Sheng Liu

Based on the concept, the development characteristics of commercial buildings in different historical periods in China was summarized: before Song Dynasty, the Chinese commercial buildings mainly referred to simple stalls; after the Song Dynasty, commercial buildings developed with the appearance of restaurants, hotels and some entertainment places; in modern Chinese, commercial buildings showed the trend of westernization. So far, the variety and size of commercial buildings became more centralized and comprehensive. With the appearance of more green and intelligent buildings, the concept of sustainable development is reflected in the design of commercial buildings. The author expects the future of Chinese commercial buildings and provides some reference for the design and development of commercial building in the future.


2014 ◽  
Vol 584-586 ◽  
pp. 107-110
Author(s):  
Jia Sheng Liu

In the Post Occupancy Evaluation(POE) of Winter City Commercial Building, the author, taking the building users (shoppers and managers) as the evaluation subjects, explored all kinds of environment involved in the use, and analyzed the environment evaluation standards, to establish POE system of winter city commercial building.


2021 ◽  
Author(s):  
◽  
Sandi Sirikhanchai

<p>New Zealand’s energy and electricity system is likely to undergo serious changes with climate change and the decarbonisation of the grid playing a significant role. Research in New Zealand around flexibly managing the electricity grid using buildings has focused on thermoelectric appliances in the residential sector while there has been limited research and quantification of the energy flexibility offered by commercial buildings. Despite this, managing the grid using energy flexible commercial buildings represents an opportunity to achieve meaningful reductions in electricity demand from buildings that are far less numerous than residential buildings.  The aim of this thesis was to establish whether energy flexible commercial buildings in New Zealand can maintain the current quality of indoor thermal comfort and achieve reductions in demand that are sufficiently large that grid operators consider them significant contributors to grid management. By understanding the contribution, we can understand whether energy flexible commercial buildings are worth further investigation. In this thesis, energy flexibility means the ability for a building to manage its demand and generation according to user needs, grid needs, and local climate conditions. Energy flexibility in commercial buildings could then support the integration of more variable renewable energy sources and increase demand response capability which is a cost-effective way to manage network constraints and reduce non-renewable  electricity generation.   Case studies of New Zealand commercial buildings represented as Building Energy Models (BEMs) were simulated under energy flexible operation in a building performance simulation software (EnergyPlus). The selected case studies were small commercial buildings less than 1,499m² in size and which all contained heat pumps. The buildings were of office, retail, and mixed-use types. Two simple energy flexibility strategies were simulated in the buildings and the results from each building were then aggregated and extrapolated across the New Zealand commercial building stock. The strategies simply shifted and shed heating electricity demand. This was done to test whether implementing basic energy flexibility strategies have the potential to reduce electricity demand by a meaningful magnitude.   At best the commercial building stock’s peak demand could reduce by 177MW by energy flexibly operating 45% of the commercial building stock, this was equivalent to around 11,700 buildings. In this scenario heating was shifted to start 150 minutes earlier in the morning. The study concluded that there is energy flexibility potential in New Zealand commercial buildings that results in demand reductions sufficiently large enough for grid operators to consider significant for grid management. This could be achieved without seriously jeopardising the current quality of indoor thermal comfort and warrants further investigation into energy flexible commercial buildings. This thesis also presented a refined methodology and energy modelling practice that could be used by other researchers to model and evaluate energy flexible buildings without the need to recreate the same methodology.</p>


2021 ◽  
Author(s):  
◽  
Sandi Sirikhanchai

<p>New Zealand’s energy and electricity system is likely to undergo serious changes with climate change and the decarbonisation of the grid playing a significant role. Research in New Zealand around flexibly managing the electricity grid using buildings has focused on thermoelectric appliances in the residential sector while there has been limited research and quantification of the energy flexibility offered by commercial buildings. Despite this, managing the grid using energy flexible commercial buildings represents an opportunity to achieve meaningful reductions in electricity demand from buildings that are far less numerous than residential buildings.  The aim of this thesis was to establish whether energy flexible commercial buildings in New Zealand can maintain the current quality of indoor thermal comfort and achieve reductions in demand that are sufficiently large that grid operators consider them significant contributors to grid management. By understanding the contribution, we can understand whether energy flexible commercial buildings are worth further investigation. In this thesis, energy flexibility means the ability for a building to manage its demand and generation according to user needs, grid needs, and local climate conditions. Energy flexibility in commercial buildings could then support the integration of more variable renewable energy sources and increase demand response capability which is a cost-effective way to manage network constraints and reduce non-renewable  electricity generation.   Case studies of New Zealand commercial buildings represented as Building Energy Models (BEMs) were simulated under energy flexible operation in a building performance simulation software (EnergyPlus). The selected case studies were small commercial buildings less than 1,499m² in size and which all contained heat pumps. The buildings were of office, retail, and mixed-use types. Two simple energy flexibility strategies were simulated in the buildings and the results from each building were then aggregated and extrapolated across the New Zealand commercial building stock. The strategies simply shifted and shed heating electricity demand. This was done to test whether implementing basic energy flexibility strategies have the potential to reduce electricity demand by a meaningful magnitude.   At best the commercial building stock’s peak demand could reduce by 177MW by energy flexibly operating 45% of the commercial building stock, this was equivalent to around 11,700 buildings. In this scenario heating was shifted to start 150 minutes earlier in the morning. The study concluded that there is energy flexibility potential in New Zealand commercial buildings that results in demand reductions sufficiently large enough for grid operators to consider significant for grid management. This could be achieved without seriously jeopardising the current quality of indoor thermal comfort and warrants further investigation into energy flexible commercial buildings. This thesis also presented a refined methodology and energy modelling practice that could be used by other researchers to model and evaluate energy flexible buildings without the need to recreate the same methodology.</p>


2021 ◽  
Author(s):  
◽  
Shaan Cory

This thesis explores the feasibility of converting the current New Zealand commercial building stock to Net Zero Energy (NZE). The analysis presented is grounded in real building performance and construction information. The goal was to establish results that are as realistic as possible to actual building performance. The Net Zero Energy Building (Net ZEB) concept is one of many low energy building movements that respond to the issues of climate change and energy security. The Net ZEB concept strives to reduce demand for energy and then to offset any residual energy consumption with non-CO2 emitting renewable energy technologies. The (re-)design focus for Net ZEBs is to reduce annual energy consumption to be equal to or less than any generated renewable energy. This is an important concept since approximately 40 percent of all energy and emissions worldwide are building related. If all buildings were designed and operated to be NZE, the existing energy can be used by other sectors which will increase energy security. Conversely, reducing the fossil fuel CO2 producing component of the energy consumed by buildings has the benefit of negating building’s contribution to climate change. The Net ZEB concept assumes each building is grid-connected, and balances the energy taken from the grid against the energy put back into the grid over a year. This study exploits the available synergies of the grid connection to achieve NZE for the whole building stock. Thus each individual building does not need to be NZE at the site, but they act as a community to reach NZE collectively. Furthermore, any grid-tied renewable energy does not need to be offset, only the non-renewable portion. A NZE target was calculated to determine the percentage reduction in current energy consumption needed before the current commercial building stock could be considered NZE. It was found that a 45 percent reduction in primary energy would offset all non-renewable CO2 emitting energy supply currently consumed by the New Zealand commercial building stock. Previous studies assessing whether converting an entire stock of commercial buildings to NZE is possible used prototypical building energy models. Prototypical models represent a hypothetical average building and have many assumptions about the way a building is operated. This thesis develops a method that takes a representative sample of real commercial buildings and makes calibrated energy models that can be aggregated to represent energy consumption for all commercial buildings in New Zealand. The developed calibration method makes use of as-built building information and a standardised procedure for identifying the inaccurate model inputs which need to be corrected for a building energy model to be calibrated. To further base the process in reality, a set of Energy Conservation Measures (ECM) that had been implemented in real Net ZEBs worldwide was adopted for the proposed retrofits. These ECMs were combined into Net ZEB solution sets for retrofitting the aggregated commercial building models. Optimisation of the Net ZEB solution sets was performed on hundreds of models to maximise energy savings. It took over six months for all of the optimisations to be completed. This thesis demonstrates the estimated New Zealand commercial building stock’s energy consumption based upon the calibrated energy models was robust by comparing it to an external estimate. It shows that NZE can be achieved by applying well understood Net ZEB solution sets to the New Zealand commercial building stock. 96 percent of the NZE goal is attainable just through demand reduction without the use of onsite renewable energy generation. The additional four percent of reduction required to meet NZE is easily attainable with onsite renewable generation. Another benefit is that the retrofitted commercial buildings will provide improved thermal comfort for the occupants. Having established NZE was possible, this thesis concludes with an analysis of the broader implications of achieving the NZE goal. It identifies the next step would be to design a NZE commercial building stock that reduces the stresses on the existing energy infrastructure. The Solution Set adopted was not developed with the interaction of the building and electrical grid in mind. To have a practical implementation of NZE will require costing and community prioritisation. This would be the next phase of work assessing nationwide NZE retrofit.


2017 ◽  
Vol 23 (1) ◽  
pp. 23-31 ◽  
Author(s):  
Xiaohua Xia ◽  
Jiangfeng Zhang ◽  
William Cass

This paper aims at analyzing the energy management activities for commercial buildings of a financial service company in South Africa by energy efficiency in terms of performance, operation, equipment and technology (POET). The sustainability of a general energy management program is discussed within this POET framework. As an application of this discussion to the commercial building scenario, the award winning energy management program of this financial service group company is featured from the POET perspective of energy efficiency. The case study shows that the POET based framework can not only cover all major energy management activities, but also identify further energy efficiency improvement opportunities.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6207
Author(s):  
Rachael Sherman ◽  
Hariharan Naganathan ◽  
Kristen Parrish

Small commercial buildings, or those comprising less than 50,000 square feet of floor area, represent 94% of U.S commercial buildings by count and consume approximately 8% of the nation’s primary energy; as such, they represent a largely unexploited opportunity for energy savings. Small commercial buildings also represent a large economic market—the National Institute of Building Sciences (NIBS) estimated the small commercial retrofit market at USD 35.6 billion. Despite the prominence of small commercial buildings and the economic opportunity for energy retrofits, many energy efficiency programs focus on large commercial buildings, and create efficiency solutions that do not meet the needs of the small commercial market. This paper presents an analysis of 34 small commercial case study projects that implemented energy efficiency retrofits. This paper contributes to the existing building retrofit body of knowledge in the following ways: (1) it identifies the decision criteria used by small commercial building stakeholders that decided to complete an energy retrofit; (2) it identifies the most commonly implemented efficiency measures in small commercial buildings, and discusses why this is the case; and (3) it provides empirical evidence about the efficacy of installing single energy efficiency measures (EEMs) compared to packages of EEMs in small commercial buildings by reporting verified energy savings. To the authors’ knowledge, this paper is the first to catalog decision criteria and energy savings for the existing small commercial buildings market, and this research illustrates that small commercial building decision-makers seem most motivated to retrofit their spaces by energy cost savings and operational concerns. Furthermore, small commercial building decision-makers opted to implement single-system retrofits in fifteen (15) of the thirty-four cases studied. Finally, this research documents the improved savings, in the small commercial buildings market, associated with a more integrated package of EEMs compared to a single-system approach, achieving approximately 10% energy savings for a single-system approach and more than 20% energy savings for integrated approaches. These savings translate to CO2 savings of 1,324,000 kgCO2/year to 2,647,000 kgCO2/year, respectively, assuming small commercial buildings are retrofit at a rate of 0.95% of the stock annually.


Sign in / Sign up

Export Citation Format

Share Document