scholarly journals Dissection of Molecular Mechanisms Regulating Protein Body Formation in Maize Endosperm - DE-FG03-95-ER20183 B139

2003 ◽  
Author(s):  
Brian A. Larkins
2013 ◽  
Vol 162 (3) ◽  
pp. 1359-1369 ◽  
Author(s):  
X. Guo ◽  
L. Yuan ◽  
H. Chen ◽  
S. J. Sato ◽  
T. E. Clemente ◽  
...  

2012 ◽  
Vol 24 (8) ◽  
pp. 3447-3462 ◽  
Author(s):  
Guifeng Wang ◽  
Fang Wang ◽  
Gang Wang ◽  
Fei Wang ◽  
Xiaowei Zhang ◽  
...  

2002 ◽  
Vol 14 (3) ◽  
pp. 655-672 ◽  
Author(s):  
Cheol Soo Kim ◽  
Young-min Woo ◽  
Amy M. Clore ◽  
Ronald J. Burnett ◽  
Newton P. Carneiro ◽  
...  

2021 ◽  
Vol 7 (18) ◽  
pp. eabc6266
Author(s):  
Qi Li ◽  
Ningkun Liu ◽  
Qing Liu ◽  
Xingguo Zheng ◽  
Lu Lu ◽  
...  

Eukaryotic cells contain numerous membraneless organelles that are made from liquid droplets of proteins and nucleic acids and that provide spatiotemporal control of various cellular processes. However, the molecular mechanisms underlying the formation and rapid stress-induced alterations of these organelles are relatively uncharacterized. Here, we investigated the roles of DEAD-box helicases in the formation and alteration of membraneless nuclear dicing bodies (D-bodies) in Arabidopsis thaliana. We uncovered that RNA helicase 6 (RH6), RH8, and RH12 are previously unidentified D-body components. These helicases interact with and promote the phase separation of SERRATE, a key component of D-bodies, and drive the formation of D-bodies through liquid-liquid phase separations (LLPSs). The accumulation of these helicases in the nuclei decreases upon Turnip mosaic virus infections, which couples with the decrease of D-bodies. Our results thus reveal the key roles of RH6, RH8, and RH12 in modulating D-body formation via LLPSs.


2017 ◽  
Vol 115 (3) ◽  
pp. 694-704 ◽  
Author(s):  
Jong Yun Han ◽  
Jae Myeong Song ◽  
Sung Hwa Seo ◽  
Chonglong Wang ◽  
Seung-Goo Lee ◽  
...  

2000 ◽  
Author(s):  
Gideon Grafi ◽  
Brian Larkins

The focus of this research project is to investigate the role of endoreduplication in maize endosperm development and the extent to which this process contributes to high levels of starch and storage protein synthesis. Although endoreduplication has been widely observed in many cells and tissues, especially those with high levels of metabolic activity, the molecular mechanisms through which the cell cycle is altered to produce consecutive cycles of S-phase without an intervening M-phase are unknown. Our previous research has shown that changes in the expression of several cell cycle regulatory genes coincide with the onset of endoreduplication. During this process, there is a sharp reduction in the activity of the mitotic cyclin-dependent kinase (CDK) and activation of the S-phase CDK. It appears the M-phase CDK is stable, but its activity is blocked by a proteinaceous inhibitor. Coincidentally, the S-phase checkpoint protein, retinoblastoma (ZmRb), becomes phosphorylated, presumably releasing an E2F-type transcriptional regulator which promotes the expression of genes responsible for DNA synthesis. To investigate the role of these cell cycle proteins in endoreduplication, we have created transgenic maize plants that express various genes in an endosperm-specific manner using a storage protein (g-zein) promoter. During the first year of the grant, we constructed point mutations of the maize M-phase kinase, p34cdc2. One alteration replaced aspartic acid at position 146 with asparagine (p3630-CdcD146N), while another changed threonine 161 to alanine (p3630-CdcT161A). These mutations abolish the activity of the CDK. We hypothesized that expression of the mutant forms of p34cdc2 in endoreduplicating endosperm, compared to a control p34cdc2, would lead to extra cycles of DNA synthesis. We also fused the gene encoding the regulatory subunit of the M- phase kinase, cyclin B, under the g-zein promoter. Normally, cyclin B is expected to be destroyed prior to the onset of endoreduplication. By producing high levels of this protein in developing endosperm, we hypothesized that the M-phase would be extended, potentially reducing the number of cycles of endoreduplication. Finally, we genetically engineered the wheat dwarf virus RepA protein for endosperm-specific expression. RepA binds to the maize retinoblastoma protein and presumably releases E2F-like transcription factors that activate DNA synthesis. We anticipated that inactivation of ZmRb by RepA would lead to additional cycles of DNA synthesis.


2020 ◽  
Vol 40 (10) ◽  
Author(s):  
Pan Yuan ◽  
Li Zhou ◽  
Xiaona Zhang ◽  
Lan Yao ◽  
Jun Ning ◽  
...  

Abstract Oocyte maturation is a prerequisite for successful fertilization and embryo development. Incomplete oocyte maturation can result in infertility. Ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) has been found to be implicated in oocyte maturation and embryo development. However, the cellular and molecular mechanisms of UCH-L1 underlying oocyte maturation have not been fully elucidated. In the present study, we observed that the introduction of UCH-L1 inhibitor LDN-57444 suppressed first polar body extrusion during mouse oocyte maturation. The inhibition of UCH-L1 by LDN-57444 led to the notable increase in reactive oxygen species (ROS) level, conspicuous reduction in glutathione (GSH) content and mitochondrial membrane potential (MMP), and blockade of spindle body formation. As a conclusion, UCH-L1 inhibitor LDN-57444 suppressed mouse oocyte maturation by improving oxidative stress, attenuating mitochondrial function, curbing spindle body formation and down-regulating extracellular signal-related kinases (ERK1/2) expression, providing a deep insight into the cellular and molecular basis of UCH-L1 during mouse oocyte maturation.


Sign in / Sign up

Export Citation Format

Share Document