scholarly journals Upscaling of Long-Term U(VI) Desorption from Pore Scale Kinetics to Field-Scale Reactive Transport Models

2006 ◽  
Author(s):  
Carl I. Steefel ◽  
Li Li ◽  
J.A. Davis ◽  
G.P. Curtis ◽  
B.D. Honeyman ◽  
...  
2012 ◽  
Vol 48 (10) ◽  
Author(s):  
Douglas S. Sassen ◽  
Susan S. Hubbard ◽  
Sergio A. Bea ◽  
Jinsong Chen ◽  
Nicolas Spycher ◽  
...  

2020 ◽  
Author(s):  
Jenna Poonoosamy ◽  
Sophie Roman ◽  
Cyprien Soulaine ◽  
Hang Deng ◽  
Sergi Molins ◽  
...  

<p>The understanding of dissolution and precipitation of minerals and its impact on the transport of fluids in fractured media is essential for various subsurface applications including shale gas production using hydraulic fracturing (“fracking”), CO<sub>2</sub> sequestration, or geothermal energy extraction. The implementation of such coupled processes into numerical reactive transport codes requires a mechanistic process understanding and model validation with quantitative experiments. In this context, we developed a microfluidic “lab-on-chip” of a reactive fractured porous medium of 800 µm × 900 µm size with 10 µm depth. The fractured medium consisted of compacted celestine grains (grain size 4 – 9 µm). A BaCl<sub>2</sub> solution was injected into the microreactor at a flow rate of 500 nl min<sup>-1</sup>, leading to the dissolution of celestine and an epitaxial growth of barite on its surface (Poonoosamy et al., 2016). Our investigations including confocal Raman spectroscopic techniques allowed for monitoring the temporal mineral transformation at the pore scale in 2D and 3D geometries. The fractured porous medium causes a heterogeneous flow field in the microreactor that leads to spatially different mineral transformation rates. In these experiments, the dynamic evolution of surface passivation processes depends on two intertwined processes: i) the dissolution of the primary mineral that is needed for the subsequent precipitation, and ii) the suppression of the dissolution reaction as a result of secondary mineral precipitation. However, the description of evolving reactive surface areas to account for mineral passivation mechanisms in reactive transport models following Daval et al. (2009) showed several limitations, and prompt for an improved description of passivation processes that includes the diffusive properties of secondary phases (Poonoosamy et al., 2020). The results of the ongoing microfluidic experiments in combination with advanced pore-scale modelling will provide new insights regarding application and extension of the description of surface passivation processes to be included in (continuum-scale) reactive transport models.</p><p>Daval D., Martinez I., Corvisier J., Findling N., Goffé B. and Guyotac F. (2009) Carbonation of Ca-bearing silicates, the case of wollastonite: Experimental investigations and kinetic modelling. Chem. Geol. 265(1–2), 63-78.</p><p>Poonoosamy J., Curti E., Kosakowski G., Van Loon L. R., Grolimund D. and Mäder U. (2016) Barite precipitation following celestite dissolution in a porous medium: a SEM/BSE and micro XRF/XRD study. Geochim. Cosmochim. Acta 182, 131-144.</p><p>Poonoosamy J., Klinkenberg M., Deissmann G., Brandt F., Bosbach D., Mäder U. and Kosakowski G. (2020) Effects of solution supersaturation on barite precipitation in porous media and consequences on permeability: experiments and modelling. Geochim. Cosmochim. Acta 270, 43-60.</p>


2021 ◽  
pp. 130917
Author(s):  
Xiangqian Wei ◽  
Wenzhi Li ◽  
Qiying Liu ◽  
Weitao Sun ◽  
Siwei Liu ◽  
...  

SPE Journal ◽  
2016 ◽  
Vol 21 (01) ◽  
pp. 280-292 ◽  
Author(s):  
John Lyons ◽  
Hadi Nasrabadi ◽  
Hisham A. Nasr-El-Din

Summary Fracture acidizing is a well-stimulation technique used to improve the productivity of low-permeability reservoirs and to bypass deep formation damage. The reaction of injected acid with the rock matrix forms etched channels through which oil and gas can then flow upon production. The properties of these etched channels depend on the acid-injection rate, temperature, reaction chemistry, mass-transport properties, and formation mineralogy. As the acid enters the formation, it increases in temperature by heat exchange with the formation and the heat generated by acid reaction with the rock. Thus, the reaction rate, viscosity, and mass transfer of acid inside the fracture also increase. In this study, a new thermal-fracture-acidizing model is presented that uses the lattice Boltzmann method to simulate reactive transport. This method incorporates both accurate hydrodynamics and reaction kinetics at the solid/liquid interface. The temperature update is performed by use of a finite-difference technique. Furthermore, heterogeneity in rock properties (e.g., porosity, permeability, and reaction rate) is included. The result is a model that can accurately simulate realistic fracture geometries and rock properties at the pore scale and that can predict the geometry of the fracture after acidizing. Three thermal-fracture-acidizing simulations are presented here, involving injection of 15 and 28 wt% of hydrochloric acid into a calcite fracture. The results clearly show an increase in the overall fracture dissolution because of the addition of temperature effects (increasing the acid-reaction and mass-transfer rates). It has also been found that by introducing mineral heterogeneity, preferential dissolution leads to the creation of uneven etching across the fracture surfaces, indicating channel formation.


2003 ◽  
Vol 67 (2) ◽  
pp. 381-398 ◽  
Author(s):  
K. A. Evans ◽  
C. J. Gandy ◽  
S. A. Banwart

Mineralogical, bulk and field leachate compositions are used to identify important processes governing the evolution of discharges from a coal spoil heap in County Durham. These processes are incorporated into a numerical one-dimensional advective-kinetic reactive transport model which reproduces field results, including gas compositions, to within an order of magnitude. Variation of input parameters allows the effects of incorrect initial assumptions on elemental profiles and discharge chemistry to be assessed. Analytical expressions for widths and speeds of kinetic reaction fronts are developed and used to predict long-term development of mineralogical distribution within the heap. Results are consistent with observations from the field site. Pyrite oxidation is expected to dominate O2 consumption in spoil heaps on the decadal timescale, although C oxidation may stabilize contaminants in effluents on the centennial scale.


2021 ◽  
Author(s):  
Hanbang Zou ◽  
Pelle Ohlsson ◽  
Edith Hammer

<p>Carbon sequestration has been a popular research topic in recent years as the rapid elevation of carbon emission has significantly impacted our climate. Apart from carbon capture and storage in e.g. oil reservoirs, soil carbon sequestration offers a long term and safe solution for the environment and human beings. The net soil carbon budget is determined by the balance between terrestrial ecosystem sink and sources of respiration to atmospheric carbon dioxide. Carbon can be long term stored as organic matters in the soil whereas it can be released from the decomposition of organic matter. The complex pore networks in the soil are believed to be able to "protect" microbial-derived organic matter from decomposition. Therefore, it is important to understand how soil structure impacts organic matter cycling at the pore scale. However, there are limited experimental studies on understanding the mechanism of physical stabilization of organic matter. Hence, my project plan is to create a heterogeneous microfluidic porous microenvironment to mimic the complex soil pore network which allows us to investigate the ability of organisms to access spaces starting from an initial ecophysiological precondition to changes of spatial accessibility mediated by interactions with the microbial community.</p><p>Microfluidics is a powerful tool that enables studies of fundamental physics, rapid measurements and real-time visualisation in a complex spatial microstructure that can be designed and controlled. Many complex processes can now be visualized enabled by the development of microfluidics and photolithography, such as microbial dynamics in pore-scale soil systems and pore network modification mimicking different soil environments – earlier considered impossible to achieve experimentally. The microfluidic channel used in this project contains a random distribution of cylindrical pillars of different sizes so as to mimic the variations found in real soil. The randomness in the design creates various spatial availability for microbes (preferential flow paths with dead-end or continuous flow) as an invasion of liquids proceeds into the pore with the lowest capillary entry pressure. In order to study the impact of different porosity in isolation of varying heterogeneity of the porous medium, different pore size chips that use the same randomly generated pore network is created. Those chips have the same location of the pillars, but the relative size of each pillar is scaled. The experiments will be carried out using sterile cultures of fluorescent bacteria, fungi and protists, synthetic communities of combinations of these, or a whole soil community inoculum. We will quantify the consumption of organic matter from the different areas via fluorescent substrates, and the bio-/necromass produced. We hypothesise that lower porosity will reduce the net decomposition of organic matter as the narrower pore throat limits the access, and that net decomposition rate at the main preferential path will be higher than inside branches</p>


2012 ◽  
Vol 9 (5) ◽  
pp. 1915-1933 ◽  
Author(s):  
J. M. Mogollón ◽  
A. W. Dale ◽  
H. Fossing ◽  
P. Regnier

Abstract. Arkona Basin (southwestern Baltic Sea) is a seasonally-hypoxic basin characterized by the presence of free methane gas in its youngest organic-rich muddy stratum. Through the use of reactive transport models, this study tracks the development of the methane geochemistry in Arkona Basin as this muddy sediment became deposited during the last 8 kyr. Four cores are modeled each pertaining to a unique geochemical scenario according to their respective contemporary geochemical profiles. Ultimately the thickness of the muddy sediment and the flux of particulate organic carbon are crucial in determining the advent of both methanogenesis and free methane gas, the timescales over which methanogenesis takes over as a dominant reaction pathway for organic matter degradation, and the timescales required for free methane gas to form.


Sign in / Sign up

Export Citation Format

Share Document