Prediction of Small Molecules Metabolic Pathways Based on Functional Group Composition

2009 ◽  
Vol 16 (8) ◽  
pp. 969-976 ◽  
Author(s):  
Jin Lu ◽  
Bing Niu ◽  
Liang Liu ◽  
Wen-Cong Lu ◽  
Yu-Dong Cai
2008 ◽  
Vol 12 (2) ◽  
pp. 131-137 ◽  
Author(s):  
Yu-Dong Cai ◽  
Ziliang Qian ◽  
Lin Lu ◽  
Kai-Yan Feng ◽  
Xin Meng ◽  
...  

Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 239
Author(s):  
Wei Wang ◽  
Long Liang ◽  
Yaoli Peng ◽  
Maria Holuszko

Micro-Fourier transform infrared (micro-FTIR) spectroscopy was used to correlate the surface chemistry of low rank coal with hydrophobicity. Six square areas without mineral impurities on low rank coal surfaces were selected as testing areas. A specially-designed methodology was applied to conduct micro-FTIR measurements and contact angle tests on the same testing area. A series of semi-quantitative functional group ratios derived from micro-FTIR spectra were correlated with contact angles, and the determination coefficients of linear regression were calculated and compared in order to identify the structure of the functional group ratios. Finally, two semi-quantitative ratios composed of aliphatic carbon hydrogen, aromatic carbon hydrogen and two different types of carbonyl groups were proposed as indicators of low rank coal hydrophobicity. This work provided a rapid way to predict low rank coal hydrophobicity through its functional group composition and helped us understand the hydrophobicity heterogeneity of low rank coal from the perspective of its surface chemistry.


PLoS ONE ◽  
2013 ◽  
Vol 8 (9) ◽  
pp. e74852 ◽  
Author(s):  
Justus P. Deikumah ◽  
Clive A. McAlpine ◽  
Martine Maron

2016 ◽  
Vol 60 (5) ◽  
pp. 451-458 ◽  
Author(s):  
Lorraine Brennan

Metabolomics is the study of small molecules present in biological samples. In recent years it has become evident that such small molecules, called metabolites, play a key role in the development of disease states. Furthermore, metabolomic applications can reveal information about alterations in certain metabolic pathways under different conditions. Data acquisition in metabolomics is usually performed using nuclear magnetic resonance (NMR)-based approaches or mass spectrometry (MS)-based approaches with a more recent trend including the application of multiple platforms in order to maximise the coverage in terms of metabolites measured. The application of metabolomics is rapidly increasing and the present review will highlight applications in nutrition research.


PLoS ONE ◽  
2015 ◽  
Vol 10 (5) ◽  
pp. e0125678 ◽  
Author(s):  
Tanja Strecker ◽  
Romain L. Barnard ◽  
Pascal A. Niklaus ◽  
Michael Scherer-Lorenzen ◽  
Alexandra Weigelt ◽  
...  

2015 ◽  
Vol 112 (39) ◽  
pp. 12026-12029 ◽  
Author(s):  
Yohei Yamashita ◽  
John C. Tellis ◽  
Gary A. Molander

Orthogonal reactivity modes offer substantial opportunities for rapid construction of complex small molecules. However, most strategies for imparting orthogonality to cross-coupling reactions rely on differential protection of reactive sites, greatly reducing both atom and step economies. Reported here is a strategy for orthogonal cross-coupling wherein a mechanistically distinct activation mode for transmetalation of sp3-hybridized organoboron reagents enables C-C bond formation in the presence of various protected and unprotected sp2-hybridized organoborons. This manifold has the potential for broad application, because orthogonality is inherent to the activation mode itself. The diversification potential of this platform is shown in the rapid elaboration of a trifunctional lynchpin through various transition metal-catalyzed processes without nonproductive deprotection or functional group manipulation steps.


2014 ◽  
Vol 14 (4) ◽  
pp. 4787-4826 ◽  
Author(s):  
S. Gilardoni ◽  
P. Massoli ◽  
L. Giulianelli ◽  
M. Rinaldi ◽  
M. Paglione ◽  
...  

Abstract. The interaction of aerosol with atmospheric water affects the processing and wet removal of atmospheric particles. Understanding such interaction is mandatory to improve model description of aerosol lifetime and ageing. We analyzed the aerosol-water interaction at high relative humidity during fog events in the Po Valley, in the framework of the ARPA-ER Supersite project. For the first time in this area, the changes in particle chemical composition caused by fog are discussed along with changes in particle microphysics. During the experiment, 14 fog events were observed. The average mass scavenging efficiency was 70% for nitrate, 68% for ammonium, 61% for sulfate, 50% for organics, and 39% for black carbon. After fog formation, the interstitial aerosol was dominated by particles smaller than 200 nm Dva (vacuum aerodynamic diameter) and enriched in carbonaceous aerosol, mainly black carbon and water insoluble organic aerosol (WIOA). For each fog event, the size segregated scavenging efficiency of nitrate and organic aerosol (OA) was calculated by comparing chemical species size distribution before and after fog formation. For both nitrate and OA, the size segregated scavenging efficiency followed a sigmoidal curve, with values close to zero below 100 nm Dva and close to 1 above 700 nm Dva. OA was able to affect scavenging efficiency of nitrate in particles smaller than 300 nm Dva. A linear correlation between nitrate scavenging and particle hygroscopicity (κ) was observed, indicating that 44–51% of the variability of nitrate scavenging in smaller particles (below 300 nm Dva) was explained by changes in particle chemical composition. The size segregated scavenging curves of OA followed those of nitrate, suggesting that organic scavenging was controlled by mixing with water-soluble species. In particular, functional group composition and OA elemental analysis indicated that more oxidized OA was scavenged more efficiently than less oxidized OA. Nevertheless, the small variability of organic functional group composition during the experiment did not allow us to discriminate the effect of different organic functionalities on OA scavenging.


PLoS ONE ◽  
2013 ◽  
Vol 8 (2) ◽  
pp. e57027 ◽  
Author(s):  
Ellen L. Fry ◽  
Pete Manning ◽  
David G. P. Allen ◽  
Alex Hurst ◽  
Georg Everwand ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document