Survey of Similarity-Based Prediction of Drug-Protein Interactions

2020 ◽  
Vol 27 (35) ◽  
pp. 5856-5886 ◽  
Author(s):  
Chen Wang ◽  
Lukasz Kurgan

Therapeutic activity of a significant majority of drugs is determined by their interactions with proteins. Databases of drug-protein interactions (DPIs) primarily focus on the therapeutic protein targets while the knowledge of the off-targets is fragmented and partial. One way to bridge this knowledge gap is to employ computational methods to predict protein targets for a given drug molecule, or interacting drugs for given protein targets. We survey a comprehensive set of 35 methods that were published in high-impact venues and that predict DPIs based on similarity between drugs and similarity between protein targets. We analyze the internal databases of known PDIs that these methods utilize to compute similarities, and investigate how they are linked to the 12 publicly available source databases. We discuss contents, impact and relationships between these internal and source databases, and well as the timeline of their releases and publications. The 35 predictors exploit and often combine three types of similarities that consider drug structures, drug profiles, and target sequences. We review the predictive architectures of these methods, their impact, and we explain how their internal DPIs databases are linked to the source databases. We also include a detailed timeline of the development of these predictors and discuss the underlying limitations of the current resources and predictive tools. Finally, we provide several recommendations concerning the future development of the related databases and methods.

2020 ◽  
Vol 26 (26) ◽  
pp. 3049-3058
Author(s):  
Ting Liu ◽  
Hua Tang

The number of human deaths caused by malaria is increasing day-by-day. In fact, the mitochondrial proteins of the malaria parasite play vital roles in the organism. For developing effective drugs and vaccines against infection, it is necessary to accurately identify mitochondrial proteins of the malaria parasite. Although precise details for the mitochondrial proteins can be provided by biochemical experiments, they are expensive and time-consuming. In this review, we summarized the machine learning-based methods for mitochondrial proteins identification in the malaria parasite and compared the construction strategies of these computational methods. Finally, we also discussed the future development of mitochondrial proteins recognition with algorithms.


2017 ◽  
Vol 13 (6) ◽  
pp. 515-525 ◽  
Author(s):  
Shao-Wu Zhang ◽  
Xiao-Nan Fan

Protein-Protein Interactions referred as PPIs perform significant role in biological functions like cell metabolism, immune response, signal transduction etc. Hot spots are small fractions of residues in interfaces and provide substantial binding energy in PPIs. Therefore, identification of hot spots is important to discover and analyze molecular medicines and diseases. The current strategy, alanine scanning isn't pertinent to enormous scope applications since the technique is very costly and tedious. The existing computational methods are poor in classification performance as well as accuracy in prediction. They are concerned with the topological structure and gene expression of hub proteins. The proposed system focuses on hot spots of hub proteins by eliminating redundant as well as highly correlated features using Pearson Correlation Coefficient and Support Vector Machine based feature elimination. Extreme Gradient boosting and LightGBM algorithms are used to ensemble a set of weak classifiers to form a strong classifier. The proposed system shows better accuracy than the existing computational methods. The model can also be used to predict accurate molecular inhibitors for specific PPIs


2014 ◽  
Vol 106 (2) ◽  
pp. 654a-655a
Author(s):  
Alice Qinhua Zhou ◽  
Corey S. O'Hern ◽  
Lynne Regan

Author(s):  
Sylvain Pitre ◽  
Md Alamgir ◽  
James R. Green ◽  
Michel Dumontier ◽  
Frank Dehne ◽  
...  

2019 ◽  
Vol 20 (3) ◽  
pp. 177-184 ◽  
Author(s):  
Nantao Zheng ◽  
Kairou Wang ◽  
Weihua Zhan ◽  
Lei Deng

Background:Targeting critical viral-host Protein-Protein Interactions (PPIs) has enormous application prospects for therapeutics. Using experimental methods to evaluate all possible virus-host PPIs is labor-intensive and time-consuming. Recent growth in computational identification of virus-host PPIs provides new opportunities for gaining biological insights, including applications in disease control. We provide an overview of recent computational approaches for studying virus-host PPI interactions.Methods:In this review, a variety of computational methods for virus-host PPIs prediction have been surveyed. These methods are categorized based on the features they utilize and different machine learning algorithms including classical and novel methods.Results:We describe the pivotal and representative features extracted from relevant sources of biological data, mainly include sequence signatures, known domain interactions, protein motifs and protein structure information. We focus on state-of-the-art machine learning algorithms that are used to build binary prediction models for the classification of virus-host protein pairs and discuss their abilities, weakness and future directions.Conclusion:The findings of this review confirm the importance of computational methods for finding the potential protein-protein interactions between virus and host. Although there has been significant progress in the prediction of virus-host PPIs in recent years, there is a lot of room for improvement in virus-host PPI prediction.


2020 ◽  
Vol 207 ◽  
pp. 112764 ◽  
Author(s):  
Yuran Qiu ◽  
Xinyi Li ◽  
Xinheng He ◽  
Jun Pu ◽  
Jian Zhang ◽  
...  

2019 ◽  
Vol 17 ◽  
pp. 1367-1376 ◽  
Author(s):  
Aurélien F.A. Moumbock ◽  
Jianyu Li ◽  
Pankaj Mishra ◽  
Mingjie Gao ◽  
Stefan Günther

Cells ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 122 ◽  
Author(s):  
Yanbin Wang ◽  
Zhu-Hong You ◽  
Shan Yang ◽  
Xiao Li ◽  
Tong-Hai Jiang ◽  
...  

Many life activities and key functions in organisms are maintained by different types of protein–protein interactions (PPIs). In order to accelerate the discovery of PPIs for different species, many computational methods have been developed. Unfortunately, even though computational methods are constantly evolving, efficient methods for predicting PPIs from protein sequence information have not been found for many years due to limiting factors including both methodology and technology. Inspired by the similarity of biological sequences and languages, developing a biological language processing technology may provide a brand new theoretical perspective and feasible method for the study of biological sequences. In this paper, a pure biological language processing model is proposed for predicting protein–protein interactions only using a protein sequence. The model was constructed based on a feature representation method for biological sequences called bio-to-vector (Bio2Vec) and a convolution neural network (CNN). The Bio2Vec obtains protein sequence features by using a “bio-word” segmentation system and a word representation model used for learning the distributed representation for each “bio-word”. The Bio2Vec supplies a frame that allows researchers to consider the context information and implicit semantic information of a bio sequence. A remarkable improvement in PPIs prediction performance has been observed by using the proposed model compared with state-of-the-art methods. The presentation of this approach marks the start of “bio language processing technology,” which could cause a technological revolution and could be applied to improve the quality of predictions in other problems.


Sign in / Sign up

Export Citation Format

Share Document