scholarly journals Flavonols as potential antiviral drugs targeting SARS-CoV-2 proteases (3CLpro and PLpro), spike protein, RNA-dependent RNA polymerase (RdRp) and angiotensin-converting enzyme II receptor (ACE2)

2021 ◽  
Vol 891 ◽  
pp. 173759
Author(s):  
Chaima Mouffouk ◽  
Soumia Mouffouk ◽  
Sara Mouffouk ◽  
Leila Hambaba ◽  
Hamada Haba
2020 ◽  
Author(s):  
Cristina Garcia-Iriepa ◽  
Cecilia Hognon ◽  
Antonio Francés-Monerris ◽  
Isabel Iriepa ◽  
Tom Miclot ◽  
...  

<div><p>Since the end of 2019, the coronavirus SARS-CoV-2 has caused more than 180,000 deaths all over the world, still lacking a medical treatment despite the concerns of the whole scientific community. Human Angiotensin-Converting Enzyme 2 (ACE2) was recently recognized as the transmembrane protein serving as SARS-CoV-2 entry point into cells, thus constituting the first biomolecular event leading to COVID-19 disease. Here, by means of a state-of-the-art computational approach, we propose a rational evaluation of the molecular mechanisms behind the formation of the complex and of the effects of possible ligands. Moreover, binding free energy between ACE2 and the active Receptor Binding Domain (RBD) of the SARS-CoV-2 spike protein is evaluated quantitatively, assessing the molecular mechanisms at the basis of the recognition and the ligand-induced decreased affinity. These results boost the knowledge on the molecular grounds of the SARS-CoV-2 infection and allow to suggest rationales useful for the subsequent rational molecular design to treat severe COVID-19 cases.</p></div>


2020 ◽  
Vol 27 ◽  
Author(s):  
Sehrish Bano ◽  
Abdul Hameed ◽  
Mariya Al-Rashida ◽  
Shafia Iftikhar ◽  
Jamshed Iqbal

Background: The 2019 novel coronavirus (2019-nCoV), also known as coronavirus 2 (SARS-CoV-2) acute respiratory syndrome has recently emerged and continued to spread rapidly with high level of mortality and morbidity rates. Currently, no efficacious therapy is available to relieve coronavirus infections. As new drug design and development takes much time, there is a possibility to find an effective treatment from existing antiviral agents. Objective: In this case, there is a need to find out the relationship between possible drug targets and mechanism of action of antiviral drugs. This review discusses about the efforts to develop drug from known or new molecules. Methods: Viruses usually have two structural integrities, proteins and nucleic acids, both of which can be possible drug targets. Herein, we systemically discuss the structural-functional relationships of the spike, 3-chymotrypsin-like protease (3CLpro), papain like protease (PLpro) and RNA-dependent RNA polymerase (RdRp), as these are prominent structural features of corona virus. Certain antiviral drugs such as Remdesivir are RNA dependent RNA polymerase inhibitor. It has the ability to terminate RNA replication by inhibiting ATP. Results: It is reported that ATP is involved in synthesis of coronavirus non-structural proteins from 3CLpro and PLpro. Similarly, mechanisms of action of many other antiviral agents has been discussed in this review. It will provide new insights into the mechanism of inhibition, and let us develop new therapeutic antiviral approaches against novel SARS-CoV-2 coronavirus. Conclusion: In conclusion, this review summarizes recent progress in developing protease inhibitors for SARS-CoV-2.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sten Ilmjärv ◽  
Fabien Abdul ◽  
Silvia Acosta-Gutiérrez ◽  
Carolina Estarellas ◽  
Ioannis Galdadas ◽  
...  

AbstractThe D614G mutation in the Spike protein of the SARS-CoV-2 has effectively replaced the early pandemic-causing variant. Using pseudotyped lentivectors, we confirmed that the aspartate replacement by glycine in position 614 is markedly more infectious. Molecular modelling suggests that the G614 mutation facilitates transition towards an open state of the Spike protein. To explain the epidemiological success of D614G, we analysed the evolution of 27,086 high-quality SARS-CoV-2 genome sequences from GISAID. We observed striking coevolution of D614G with the P323L mutation in the viral polymerase. Importantly, the exclusive presence of G614 or L323 did not become epidemiologically relevant. In contrast, the combination of the two mutations gave rise to a viral G/L variant that has all but replaced the initial D/P variant. Our results suggest that the P323L mutation, located in the interface domain of the RNA-dependent RNA polymerase, is a necessary alteration that led to the epidemiological success of the present variant of SARS-CoV-2. However, we did not observe a significant correlation between reported COVID-19 mortality in different countries and the prevalence of the Wuhan versus G/L variant. Nevertheless, when comparing the speed of emergence and the ultimate predominance in individual countries, it is clear that the G/L variant displays major epidemiological supremacy over the original variant.


2021 ◽  
Vol 22 (15) ◽  
pp. 8226
Author(s):  
John Tsu-An Hsu ◽  
Chih-Feng Tien ◽  
Guann-Yi Yu ◽  
Santai Shen ◽  
Yi-Hsuan Lee ◽  
...  

Increasing evidence suggests that elderly people with dementia are vulnerable to the development of severe coronavirus disease 2019 (COVID-19). In Alzheimer’s disease (AD), the major form of dementia, β-amyloid (Aβ) levels in the blood are increased; however, the impact of elevated Aβ levels on the progression of COVID-19 remains largely unknown. Here, our findings demonstrate that Aβ1-42, but not Aβ1-40, bound to various viral proteins with a preferentially high affinity for the spike protein S1 subunit (S1) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the viral receptor, angiotensin-converting enzyme 2 (ACE2). These bindings were mainly through the C-terminal residues of Aβ1-42. Furthermore, Aβ1-42 strengthened the binding of the S1 of SARS-CoV-2 to ACE2 and increased the viral entry and production of IL-6 in a SARS-CoV-2 pseudovirus infection model. Intriguingly, data from a surrogate mouse model with intravenous inoculation of Aβ1-42 show that the clearance of Aβ1-42 in the blood was dampened in the presence of the extracellular domain of the spike protein trimers of SARS-CoV-2, whose effects can be prevented by a novel anti-Aβ antibody. In conclusion, these findings suggest that the binding of Aβ1-42 to the S1 of SARS-CoV-2 and ACE2 may have a negative impact on the course and severity of SARS-CoV-2 infection. Further investigations are warranted to elucidate the underlying mechanisms and examine whether reducing the level of Aβ1-42 in the blood is beneficial to the fight against COVID-19 and AD.


2021 ◽  
Vol 8 ◽  
Author(s):  
Somasundaram Raghavan ◽  
Divya Borsandra Kenchappa ◽  
M. Dennis Leo

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) uses the Angiotensin converting enzyme 2 (ACE2) receptor present on the cell surface to enter cells. Angiotensin converting enzyme 2 is present in many cell types including endothelial cells, where it functions to protect against oxidative damage. There is growing evidence to suggest that coronavirus disease (COVID-19) patients exhibit a wide range of post-recovery symptoms and shows signs related to cardiovascular and specifically, endothelial damage. We hypothesized that these vascular symptoms might be associated with disrupted endothelial barrier integrity. This was investigated in vitro using endothelial cell culture and recombinant SARS-CoV-2 spike protein S1 Receptor-Binding Domain (Spike). Mouse brain microvascular endothelial cells from normal (C57BL/6 mice) and diabetic (db/db) mice were used. An endothelial transwell permeability assay revealed increased permeability in diabetic cells as well as after Spike treatment. The expression of VE-Cadherin, an endothelial adherens junction protein, JAM-A, a tight junctional protein, Connexin-43, a gap junctional protein, and PECAM-1, were all decreased significantly after Spike treatment in control and to a greater extent, in diabetic cells. In control cells, Spike treatment increased association of endothelial junctional proteins with Rab5a, a mediator of the endocytic trafficking compartment. In cerebral arteries isolated from control and diabetic animals, Spike protein had a greater effect in downregulating expression of endothelial junctional proteins in arteries from diabetic animals than from control animals. In conclusion, these experiments reveal that Spike-induced degradation of endothelial junctional proteins affects endothelial barrier function and is the likely cause of vascular damage observed in COVID-19 affected individuals.


2021 ◽  
Vol 2 (1) ◽  
pp. 16-27
Author(s):  
Zahra Sharifinia ◽  
◽  
Samira Asadi ◽  
Mahyar Irani ◽  
Abdollah Allahverdi ◽  
...  

Objective: The receptor-binding domain (RBD) of the S1 domain of the SARS-CoV- 2 Spike protein performs a key role in the interaction with Angiotensin-converting enzyme 2 (ACE2), leading to both subsequent S2 domain-mediated membrane fusion and incorporation of viral RNA in host cells. Methods: In this study, we investigated the inhibitor’s targeted compounds through existing human ACE2 drugs to use as a future viral invasion. 54 FDA approved drugs were selected to assess their binding affinity to the ACE2 receptor. The structurebased methods via computational ones have been used for virtual screening of the best drugs from the drug database. Key Findings: The ligands “Cinacalcet” and “Levomefolic acid” highaffinity scores can be a potential drug preventing Spike protein of SARS-CoV-2 and human ACE2 interaction. Levomefolic acid from vitamin B family was proved to be a potential drug as a spike protein inhibitor in previous clinical and computational studies. Besides that, in this study, the capability of Levomefolic acid to avoid ACE2 and Spike protein of SARS-CoV-2 interaction is indicated. Therefore, it is worth to consider this drug for more in vitro investigations as ACE2 and Spike protein inhibition candidate. Conclusion: The two Cinacalcet and Levomefolic acid are the two ligands that have highest energy binding for human ACE2 blocking among 54 FDA approved drugs.


2020 ◽  
Vol 222 (12) ◽  
pp. 1965-1973 ◽  
Author(s):  
Edward P Gniffke ◽  
Whitney E Harrington ◽  
Nicholas Dambrauskas ◽  
Yonghou Jiang ◽  
Olesya Trakhimets ◽  
...  

Abstract We present a microsphere-based flow cytometry assay that quantifies the ability of plasma to inhibit the binding of spike protein to angiotensin-converting enzyme 2. Plasma from 22 patients who had recovered from mild coronavirus disease 2019 (COVID-19) and expressed anti–spike protein trimer immunoglobulin G inhibited angiotensin-converting enzyme 2–spike protein binding to a greater degree than controls. The degree of inhibition was correlated with anti–spike protein immunoglobulin G levels, neutralizing titers in a pseudotyped lentiviral assay, and the presence of fever during illness. This inhibition assay may be broadly useful to quantify the functional antibody response of patients recovered from COVID-19 or vaccine recipients in a cell-free assay system.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Thomas J. Esparza ◽  
Negin P. Martin ◽  
George P. Anderson ◽  
Ellen R. Goldman ◽  
David L. Brody

AbstractThere are currently few approved effective treatments for SARS-CoV-2, the virus responsible for the COVID-19 pandemic. Nanobodies are 12–15 kDa single-domain antibody fragments that can be delivered by inhalation and are amenable to relatively inexpensive large scale production compared to other biologicals. We have isolated nanobodies that bind to the SARS-CoV-2 spike protein receptor binding domain and block spike protein interaction with the angiotensin converting enzyme 2 (ACE2) with 1–5 nM affinity. The lead nanobody candidate, NIH-CoVnb-112, blocks SARS-CoV-2 spike pseudotyped lentivirus infection of HEK293 cells expressing human ACE2 with an EC50 of 0.3 µg/mL. NIH-CoVnb-112 retains structural integrity and potency after nebulization. Furthermore, NIH-CoVnb-112 blocks interaction between ACE2 and several high affinity variant forms of the spike protein. These nanobodies and their derivatives have therapeutic, preventative, and diagnostic potential.


Sign in / Sign up

Export Citation Format

Share Document