Exploring the Mechanism of Lingzhu San in Treating Febrile Seizures by Using Network Pharmacology

Author(s):  
Xiao Zhou ◽  
Xiao-Fei Zhang ◽  
Dong-Yan Guo ◽  
Yan-Jun Yang ◽  
Lin Liu ◽  
...  

Objective: Lingzhu San (LZS) is a traditional Chinese medicine (TCM) prescription which can be effective in treating febrile seizures (FS) and has few researches on the mechanisms. In order to better guide the clinical use of LZS, we used the research ideas and methods of network pharmacology to find the potential core compounds, targets and pathways of LZS in the complex TCM system for the treatment of FS, and predict the mechanism. Materials and Methods: Databases such as BATMAN, TCMSP, TCMID, and SWISS TARGET are used to mine the active compounds and targets of LZS, and the target information of FS was obtained through GENECARDS and OMIM. Using Venny2.1.0 and Cytoscape software to locked the potential core compounds and targets of FS. The R language and ClusterProfiler software package were adopt to enrich and analyze the KEGG and GO pathways of the core targets and the biological processes and potential mechanisms of the core targets were revealed. Results: 187 active compounds and 2113 target proteins of LZS were collected. And 38 potential core compounds, 35 core targets and 775 metabolic and functional pathways were screened which involved in mediating FS. Finally, the role of the core compounds, targets and pivotal pathways of LZS regulated FS in the pathogenesis and therapeutic mechanism of FS was discussed and clarified. Conclusions: In this paper, the multi-compounds, multi-targets and multi-pathways mechanism of LZS in the treatment of FS was preliminarily revealed through the analysis of network pharmacology data, which is consistent with the principle of multi-compounds compatibility of TCM prescriptions and unified treatment of diseases from multiple angles, and it provides a new way for TCM to treat complex diseases caused by multiple factors.

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Yan Li ◽  
Rui Li ◽  
Zibo Ouyang ◽  
Shao Li

Traditional Chinese Medicine (TCM) doctors always prescribe various herbal formulae tailored to individual patients. However, there is still a lack of appropriate methods to study the rule and potential biological basis underlying the numerous prescriptions. Here we developed an Herb-Compound-Target-Disease coherent network approach to analyze 871 herbal prescriptions from a TCM master, Mr. Ji-Ren Li, in his clinical practice on treatment of rheumatoid arthritis (RA). The core herb networks were extracted from Mr. Li’s prescriptions. Then, we predicted target profiles of compounds in core herb networks and calculated potential synergistic activities among them. We further found that the target sets of core herbs overlapped significantly with the RA related biological processes and pathways. Moreover, we detected a possible connection between the prescribed herbs with different properties such as Cold and Hot and the Western drugs with different actions such as immunomodulatory and hormone regulation on treatment of RA. In summary, we explored a new application of TCM network pharmacology on the analysis of TCM prescriptions and detected the networked core herbs, their potential synergistic and biological activities, and possible connections with drugs. This work offers a novel way to understand TCM prescriptions in clinical practice.


2021 ◽  
Vol 271 ◽  
pp. 03036
Author(s):  
Ting Chen ◽  
Liang Zhang ◽  
Xulong Huang ◽  
Haiyu Chen ◽  
Shengpeng Zhu ◽  
...  

This study used the method of network pharmacology to preliminarily predict the mechanism of Heterophyllin B(HB) inhibiting Esophageal Cancer(EC). We found the HB targets in the TCMSP and PuChem databases, and searched all EC-related targets in the GeneCards database. Taken the intersection of HB and EC as potential targets for inhibiting EC, and used Cytoscape 3.7.1 software to perform topological analysis on potential targets to obtain core targets. Used the start Analysisi function in the DAVID database to analyzed the biological process of the core target, and visualized it with the the R language tool. As a result, 75 potential targets for inhibiting EC were obtained, of which MMP9, MMP2, CCND1, STAT3, CXCR4, BDKRB1and PTGS2 were the main core targets. HB inhibits the occurrence of EC through Pathways in cancer, TNF signaling pathway, Bladder cancer, Small cell lung cancer, Rheumatoid arthritis related pathways, mainly involving proteolysis, collagen catabolic process, extracellular matrix disassembly, positive regulation of cell proliferation, positive regulation of cytosolic calcium ion concentration biological processes. This study initially revealed the molecular mechanism of HB inhibiting EC, and provided a reference for HB to expand new indications.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Qi Jin ◽  
Xiao-Feng Hao ◽  
Li-Ke Xie ◽  
Jing Xu ◽  
Mei Sun ◽  
...  

Background. Diabetic retinopathy (DR) includes a series of typical lesions affected by retinal microvascular damage caused by diabetes mellitus (DM), which not only seriously damages the vision, affecting the life’s quality of patients, but also brings a considerable burden to the family and society. Astragalus Membranaceus (AM) is a commonly used medicine in clinical therapy of eye disorders in traditional Chinese medicine (TCM). In recent years, it is also used for treating DR, but the specific mechanism is unclear. Therefore, this study explores the potential mechanism of AM in DR treatment by using network pharmacology. Methods. Based on the oral bioavailability (OB) and drug likeness (DL) of two ADME (absorption, distribution, metabolism, excretion) parameters, Traditional Chinese Medicine Systems Pharmacology Database (TCMSP), Swiss Target Prediction platform, GeneCards, and OMIM database were used to predict and screen the active compounds of AM, the core targets of AM in DR treatment. The Metascape data platform was used to perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis on the core targets. Results. 24 active compounds were obtained, such as quercetin, kaempferol, and astragaloside IV. There were 169 effective targets of AM in DR treatment, and the targets were further screened and finally, 38 core targets were obtained, such as VEGFA, AKT1, and IL-6. EGFR tyrosine kinase inhibitor resistance, AGE-RAGE signaling pathway in diabetic complications, PI3K-Akt signaling pathway, and other metabolic pathways participated in oxidative stress, cell apoptosis, angiogenesis signal transduction, inflammation, and other biological processes. Conclusion. AM treats DR through multiple compounds, multiple targets, and multiple pathways. AM may play a role in the treatment of DR by targeting VEGFA, AKT1, and IL-6 and participating in oxidative stress, angiogenesis, and inflammation.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yi Xie ◽  
Kainan Zhou ◽  
Yan Wang ◽  
Shuhan Yang ◽  
Suying Liu ◽  
...  

Background. Cancer-related fatigue (CRF) is an increasingly appreciated complication in cancer patients, which severely impairs their quality of life for a long time. Astragali Radix (AR) is a safe and effective treatment to improve CRF, but the related mechanistic studies are still limited. Objective. To systematically analyze the mechanism of AR against CRF by network pharmacology. Methods. TCMSP was searched to obtain the active compounds and targets of AR. The active compound-target (AC-T) network was established and exhibited by related visualization software. The GeneCards database was searched to acquire CRF targets, and the intersection targets with AR targets were used to make the Venny diagram. The protein-protein interaction (PPI) network of intersection targets was established, and further, the therapeutic core targets were selected by topological parameters. The selected core targets were uploaded to Metascape for GO and KEGG analysis. Finally, AutoDock Vina and PyMOL were employed for molecular docking validation. Results. 16 active compounds of AR were obtained, such as quercetin, kaempferol, 7-O-methylisomucronulatol, formononetin, and isorhamnetin. 57 core targets were screened, such as AKT1, TP53, VEGFA, IL-6, and CASP3. KEGG analysis manifested that the core targets acted on various pathways, including 137 pathways such as TNF, IL-17, and the AGE-RAGE signaling pathway. Molecular docking demonstrated that active compounds docked well with the core targets. Conclusion. The mechanism of AR in treating CRF involves multiple targets and multiple pathways. The present study laid a theoretical foundation for the subsequent research and clinical application of AR and its extracts against CRF.


2020 ◽  
Author(s):  
Xiao Song ◽  
Fei Guo ◽  
Xiao-Chen Sun ◽  
Shu-Yue Wang ◽  
Yao-Hui Yuan ◽  
...  

Abstract Background: Leukemia was listed by the World Health Organization as one of the five most intractable diseases in the world. The multi-drug resistance (MDR) of leukemia cells limits the efficacy of anti-tumor drugs and is the major reason for the chemotherapy failure and recurrence of leukemia chemotherapy. Some studies have shown that Euphorbiae semen (ES) possesses the characteristics of new therapeutic drugs for MDR. However, the molecular mechanisms and active compounds have not yet been fully clarified. Therefore, there is a need for explore its active compounds and demonstrate its mechanisms through network pharmacology and molecular docking technology.Method: First, the TCMSP database was searched and screened the active compounds of the ES, supplemented with compounds verified by literature, so as to further identify the core compounds in the active ingredient. Simultaneously, the TCMSP and Swiss database were searched to the targets of active compounds, and the targets of reverses leukemia multidrug resistance (RL-MDR) were screened in the relevant databases, such as GeneCards and DrugBank. Then, the targets of active compounds were intersected with RL-MDR targets to obtain potential targets of ES acting on MDR. The compound–target network was constructed by Cytoscape. The target protein–protein interaction network was built using STRING and Cytoscape database. Second, the R language and DAVID database were used to analyse Gene Ontology (GO) biological functions analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) signal pathways enrichment. Finally, molecular docking method was utilized to investigate the binding activity between the core targets and the active compounds of ES.Results: Compound–target network mainly contained 22 compounds and 81 corresponding targets. Finally, seven components in ES were selected and 10 core targets were identified; Key targets contained JUN, CASP3, MAOA, AR, PPARG, DRD2, ADRA2A, CHRM2, PTGS2 and MAPK14. GO enrichment analysis indicated the main biological functions of potential genes of ES in the treatment of MDR. KEGG pathway enrichment analysis showed the main pathways, mainly including apoptosis, pathways in cancer, p53 signaling pathway, VEGF signaling pathway, TNF signaling pathway and PI3K–Akt signaling pathway. Finally, we chose the top 10 common targets for molecular docking with the 7 active compounds of ES. The results of molecular docking indicated that the compounds of ES, which had good affinity with targets. Conclusion: The molecular mechanism of ES in the treatment of MDR showed the synergistic reaction of multi-compound, multi-target, and multi-pathway of traditional Chinese medicine, which provided ideas for further clinical research.


2020 ◽  
Author(s):  
Wanjin Fu ◽  
Ajuan Gong ◽  
Bin Yu ◽  
Xin Wei ◽  
Yong Chen ◽  
...  

Abstract Background: Shenlian Capsule is a Chinese medicine compound approved by the China Food and Drug Administration (CFDA) for the treatment of advanced non-small cell lung cancer(NSCLC). However, due to its complex constituents, cause its effective active compounds and main action mechanisms for treating diseases are still not fully clear. The purpose of this work is to explore the active ingredients and mechanisms of Shenlian Capsule treatment NSCLC through a system pharmacological approach. Methods: First, a database of Shenlian Capsule chemical composition was constructed by retrieving Chinese herbal medicine data. Absorption, distribution, metabolism and excretion (ADME) methods were used to screen potential active compounds. Predict active compound targets with a large-scale molecular network target prediction technology. Clustering of active compounds obtained through cluster analysis by MECODE plug-in, each cluster obtains the main pathways through enrichment analysis method. To get all targets related to survival in NSCLC, the survival related targets were intersected with the compounds target (C-T) network to get the survival related targets for Shenlian Capsule. Finally, a batch molecular docking technique was used to verify the effect of active compounds of Shenlian Capsule on survival-related targets.Results: The Shenlian Capsule C-T network was constructed with 117 potential compounds and 47 targets. Treatment of NSCLC with Shenlian Capsule through enrichment analysis may involve multiple pathways such as anti-inflammatory, immune regulation, regulation of cell cycle, apoptosis, antiviral, cell hypoxia, angiogenesis and so on. Shenlian Capsule has eight survival-related genes in non-small cell lung adenocarcinoma (LUAD) and two survival-related genes in non-small cell squamous cell lung carcinoma (LUSC). It is known through molecular docking that the active compound has lower energy after conformation with survival-related genes, and has lower binding energy and stable binding.Conclusion: In this study, the potential compounds of active compounds in Shenlian Capsule were first predicted using network pharmacology technology. Through the enrichment analysis, the main pathways of the role of Shenlian Capsule were outcropped. Secondly, by combining bioinformatics and network pharmacology, Shenlian Capsule can be regulated to target survival-related targets. Finally, the molecular docking technique shows the relationship between active compounds and survival-related targets after docking. This work provided a scientific basis for the clinical role of Shenlian Capsule in the treatment of NSCLC, provided a research basis for further clarifying the active ingredients and mechanism of Shenlian Capsule in the treatment of NSCLC.


2021 ◽  
Author(s):  
Yi Pan ◽  
Wanlu Zhao ◽  
Luping Qin ◽  
Lu Zhang

Abstract Background: Youguiyin (YGY) has been confirmed to treat osteoporosis (OP) in clinical trials, but its specific pharmacological mechanism remains unclear. This study aimed to explore the material basis and potential mechanism of YGY in the treatment of OP based on network pharmacology and molecular docking.Methods: Databases including TCMSP, SwissTargetPrediction database, OMIM, and TTD were used to predict the effective ingredients and relevant targets of YGY in the treatment of OP. The STRING database was used to reveal the relationship between each intersection target protein. Metascape database was used to perform GO enrichment analysis and KEGG pathway enrichment analysis on the intersection targets. Cytoscape 3.6.0 software was used to show the complex network relationship of YGY in the treatment of OP. According to the results of network characteristics analysis, the core effective ingredients and the core targets were screened out. Autodock 4.0 was used for molecular docking and Pymol was used to visualize the docking results.Results: 290 effective ingredients, 1127 targets of the effective ingredients, 273 relevant targets of OP and 17 intersection targets were screened out in total by searching literature and databases. Intersection targets could affect biological processes including regulation of inflammatory response, ossification, negative regulation of post-transcriptional gene silencing, positive regulation of cytokine biosynthetic process and regulation of hormone levels by regulating signal pathways including TNF signaling pathway, osteoclast differentiation, apoptosis, MAPK signaling pathway and PI3K/Akt signaling pathway. Through screening, 14 core effective ingredients and 6 core targets were confirmed. The results of molecular docking showed that most of the core effective ingredients including α-humulene, cinnamaldehyde, denudatine, benzoylhypaconine and quercetin had good binding activity with the core targets including TNF-α, IL-1β and IL-6.Conclusion: Based on network pharmacology and molecular docking, the critical effective ingredients, key targets, important signal pathways and main biological processes of YGY in the treatment of OP were successfully screened out. This study revealed the material basis and the mechanism of YGY in the treatment of OP and provided a theoretical basis for follow-up experimental research and clinical application of YGY.


2020 ◽  
Author(s):  
WingYan Yun ◽  
Wenchao Dan ◽  
Jinlei Liu ◽  
Xinyuan Guo ◽  
Min Li ◽  
...  

Abstract BackgroundAlthough traditional Chinese medicine is safe for the clinical treatment of angiogenesis, the in vivo intervention mechanism is diverse, complex, and largely unknown. Therefore, we aimed to explore the active ingredients of traditional Chinese medicine and their mechanisms for the treatment of angiogenesis.MethodsData on angiogenesis-related targets were collected from the GeneCards, Therapeutic Target Database, Online Mendelian Inheritance in Man, DrugBank, and DisGeNET databases. These were matched to related molecular compounds and ingredients in the traditional Chinese medicine system pharmacology platform. The data were integrated; based on the condition of Degree >1 and relevant literature, a target-compound network as well as compound-medicine and target-compound-medicine networks were constructed using Cytoscape. Molecular docking was used to predict the predominant binding combination of core targets and components.ResultsWe obtained a total of 79 targets for angiogenesis, and 41 targets were matched to 3839 compounds. Then, 110 compounds were selected owing to their high correlation with angiogenesis. Fifty-five combinations in the network were obtained by molecular docking, among which PTGS2-Astragalin (-9.18 kcal/mol), KDR-Astragalin (-7.94 kcal/mol), PTGS2-quercetin (-7.41 kcal/mol), and PTGS2-myricetin (-7.21 kcal/mol) were the top combinations. These results indicated that the selected potential core compounds may have good binding activity with the core targets. Eighty new combinations were obtained from the network, and the top combinations based on affinity were KDR-beta-carotene (-10.13 kcal/mol), MMP9-beta-Sitosterol (-8.04 kcal/mol), MMP9-Astragalin (-7.82 kcal/mol), and MMP9-Diosgenin (-7.51 kcal/mol). The core targets included PTGS2, KDR, VEGFA, and MMP9. The essential components identified were astragalin, kaempferol, myricetin, quercetin, and β-sitosterol. The crucial Chinese medicines identified included Polygoni Cuspidati Rhizoma et Radix, Morus alba Root Bark, and Forsythia Fructus.ConclusionsBy systematically analysing the essential ingredients of traditional Chinese medicine and their targets, it is possible to determine their potential mechanism of action in the treatment of pathological angiogenesis. Our study provides a basis for further research and development of new therapeutics for angiogenesis.


2021 ◽  
Author(s):  
Yi Pan ◽  
Wanlu Zhao ◽  
Luping Qin ◽  
Lu Zhang

Abstract Background: Youguiyin (YGY) has been confirmed to treat osteoporosis (OP) in clinical trials, but its specific pharmacological mechanism remains unclear. This study aimed to explore the material basis and potential mechanism of YGY in the treatment of OP based on network pharmacology and molecular docking.Methods: Databases including TCMSP, SwissTargetPrediction database, OMIM, and TTD were used to predict the effective ingredients and relevant targets of YGY in the treatment of OP. The STRING database was used to reveal the relationship between each intersection target protein. Metascape database was used to perform GO enrichment analysis and KEGG pathway enrichment analysis on the intersection targets. Cytoscape 3.6.0 software was used to show the complex network relationship of YGY in the treatment of OP. According to the results of network characteristics analysis, the core effective ingredients and the core targets were screened out. Autodock 4.0 was used for molecular docking and Pymol was used to visualize the docking results.Results: 290 effective ingredients, 1127 targets of the effective ingredients, 273 relevant targets of OP and 17 intersection targets were screened out in total by searching literature and databases. Intersection targets could affect biological processes including regulation of inflammatory response, ossification, negative regulation of post-transcriptional gene silencing, positive regulation of cytokine biosynthetic process and regulation of hormone levels by regulating signal pathways including TNF signaling pathway, osteoclast differentiation, apoptosis, MAPK signaling pathway and PI3K/Akt signaling pathway. Through screening, 14 core effective ingredients and 6 core targets were confirmed. The results of molecular docking showed that most of the core effective ingredients including α-humulene, cinnamaldehyde, denudatine, benzoylhypaconine and quercetin had good binding activity with the core targets including TNF-α, IL-1β and IL-6.Conclusion: Based on network pharmacology and molecular docking, the critical effective ingredients, key targets, important signal pathways and main biological processes of YGY in the treatment of OP were successfully screened out. This study revealed the material basis and the mechanism of YGY in the treatment of OP and provided a theoretical basis for follow-up experimental research and clinical application of YGY.


2020 ◽  
Vol 2020 ◽  
pp. 1-20
Author(s):  
Pei Liu ◽  
Huachong Xu ◽  
Yucong Shi ◽  
Li Deng ◽  
Xiaoyin Chen

Background. The incidence of gout and hyperuricemia is increasing year by year in the world. Plantain is a traditional natural medicine commonly used in the treatment of gout and hyperuricemia, but the molecular mechanism of its active compounds is still unclear. Based on network pharmacology, this article predicts the targets and pathways of effective components of plantain for gout and hyperuricemia and provides effective reference for clinical medication. Method. Traditional Chinese medicine systems pharmacology database and analysis platform (TCMSP) and SymMap databases were used to screen out the active compounds and their targets in plantain. GeneCards, Therapeutic Target Database (TTD), and Online Mendelian Inheritance in Man (OMIM) databases were used to find the targets corresponding to gout and hyperuricemia. Venn diagram was used to obtain the intersection targets of plantain and diseases. The interaction network of the plantain active compounds-targets-pathways-diseases was constructed by using Cytoscape 3.7.2 software. Finally, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were carried out. Result. Seven active compounds were identified by network pharmacological analysis, including dinatin, baicalein, baicalin, sitosterol, 6-OH-luteolin, stigmasterol, and luteolin. Plantain plays a role in gout and hyperuricemia diseases by regulating various biological processes, cellular components, and molecular functions. The core targets of plantain for treating gout are MAPK1, RELA, TNF, NFKBIA, and IFNG, and the key pathways are pathways in cancer, hypoxia-inducible factor-1 (HIF-1) signaling pathway, interleukin (IL)-17 signaling pathway, Chagas disease (American trypanosomiasis), and relaxin signaling pathway. The core targets of plantain for hyperuricemia are RELA, MAPK1, NFKBIA, CASP3, CASP8, and TNF, and the main pathways are pathways in cancer, apoptosis, hepatitis B, IL-17 signaling pathway, and toxoplasmosis. Conclusion. This study explored the related targets and mechanisms of plantain for the treatment of gout and hyperuricemia from the perspective of network pharmacological analysis, reflecting the characteristics of multiple components, multiple targets, and multiple pathways, and it provides a good theoretical basis for the clinical application of plantain.


Sign in / Sign up

Export Citation Format

Share Document