Development and validation of a LC-MS/MS method for quantification of mobocertinib (TAK-788) in plasma and its application to pharmacokinetic study in rats

Author(s):  
Bo Li ◽  
Jin Wang ◽  
Xinyao Dou ◽  
Xinjie Zhang ◽  
Xianbei Xue ◽  
...  

Aim and Objective:: An analytical method for the determination of mobocertinib, an investigational tyrosine kinase inhibitor, was developed and optimized by high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) in rat plasma. Materials and Methods:: Plasma samples were pretreated by the protein precipitation method with a methanol solution of osimertinib as the internal standard (IS). Chromatographic separation was performed using an Inertsil ODS-3 column (50 mm × 4.6 mm, I.D. 5 μm) column with the temperature maintained at 40 °C. The mobile phase consisted of water (containing 0.1% formic acid) and methanol in a gradient mode at a flow rate of 0.5 mL/min. Mass spectrometric detection was carried out in the selected reaction monitoring (SRM) mode with positive electrospray ionization, and the mass transitions of mobocertinib and osimertinib were m/z 587.01 → 71.88 and m/z 499.80 → 71.94, respectively. The method was validated in terms of selectivity, linearity, accuracy and precision, extraction recovery and matrix effect, stability and carryover as per the guidelines for bioanalytical method validation (FDA, 2018). The method was applied to the pharmacokinetic study of mobocertinib in rats by oral gavage at the doses of 2, 6, and 18 mg/kg. A total of 216 plasma samples from 18 rats were analyzed. Results:: It showed good linearity over the range of 1-1000 ng/mL (R2 = 0.9957). The intra-batch accuracy was within 94.65-102.59% and the precision was within 5.49-10.46%. The inter-batch accuracy was within 97.08-102.25% with a precision of 7.54-10.13%. The extraction recovery and matrix factor were acceptable for the bioanalysis of mobocertinib. Additionally, mobocertinib was found to be stable under the detected conditions. Mobocertinib showed linear pharmacokinetic characteristics following oral administration to rats at 2.0-18.0 mg/kg. Conclusion:: The developed and validated method was successfully employed in the pharmacokinetic study in rats following oral administration of mobocertinib at the doses of 2, 6, and 18 mg/kg.

2017 ◽  
Vol 20 (2) ◽  
pp. 241-249 ◽  
Author(s):  
A. Jasiecka-Mikołajczyk ◽  
J.J. Jaroszewski

Abstract Tigecycline (TIG), a novel glycylcycline antibiotic, plays an important role in the management of complicated skin and intra-abdominal infections. The available data lack any description of a method for determination of TIG in avian plasma. In our study, a selective, accurate and reversed-phase high performance liquid chromatography-tandem mass spectrometry method was developed for the determination of TIG in turkey plasma. Sample preparation was based on protein precipitation and liquid-liquid extraction using 1,2-dichloroethane. Chromatographic separation of TIG and minocycline (internal standard, IS) was achieved on an Atlantis T3 column (150 mm × 3.0 mm, 3.0 μm) using gradient elution. The selected reaction monitoring transitions were performed at 293.60 m/z → 257.10 m/z for TIG and 458.00 m/z → 441.20 m/z for IS. The developed method was validated in terms of specificity, selectivity, linearity, lowest limit of quantification, limit of detection, precision, accuracy, matrix effect, carry-over effect, extraction recovery and stability. All parameters of the method submitted to validation met the acceptance criteria. The assay was linear over the concentration range of 0.01-100 μg/ml. This validated method was successfully applied to a TIG pharmacokinetic study in turkey after intravenous and oral administration at a dose of 10 mg/kg at various time-points.


Author(s):  
Fatema Moni ◽  
Suriya Sharmin ◽  
Satyajit Roy Rony ◽  
Farhana Afroz ◽  
Shammi Akhter ◽  
...  

AbstractThis study describes the development and validation of a simple, specific, accurate, and precise method for quantitative determination of Esomeprazole in human serum using Pantoprazole as internal standard (IS). After the addition of internal standard, Esomeprazole from serum samples was extracted simply by protein precipitation method followed by centrifugation and the supernatants were directly injected into the high performance liquid chromatography (HPLC). The chromatographic separation of the compounds was obtained on Hitachi Lachrom C8 column (5 µm, 250 × 4.6 mm) with a mobile phase consisting of 5 mM potassium dihydrogen phosphate pH 7.4 and acetonitrile in a ratio of 70:30 with UV detection at 302 nm with a flow rate of 1 mL/min. The method was sensitive and specific, and validated over a concentration range of 0.06–6.0 µg/mL. The limit of detection (LOD) and lower limit of quantification (LOQ) was 0.03 µg/mL and 0.06 µg/mL, respectively. The precision and accuracy expressed as relative standard deviation were less than 15%. The average recovery of Esomeprazole from serum was 97.08%.


2020 ◽  
Vol 19 (3) ◽  
pp. 651-659
Author(s):  
Xin Jia ◽  
Yinfei Du ◽  
Jia Xu ◽  
Yu Dong

Purpose: To develop a simple, rapid and sensitive ultra-performance liquid chromatography - electrospray ionization-mass spectrometry (UPLC–ESI–MS/MS) method was developed and fully validated for the simultaneous determination of galangin, kaempferide, galangin-3-methylether, kaempferol and quercetin in rat plasma after oral administration of Mongolian Medicine, Shudage-4 extracts. Methods: The galangin, kaempferide, galangin-3-methylether, kaempferol and quercetin were separated on a C18 column using 0.1 % formic acid at a flow rate of 0.4 mL / min and detected by a mass spectrometer in negative-ion mode with selected reaction monitoring (SRM) mode. Plasma samples were processed with a simple deproteinization technique using ethyl acetate and acetonitrile. Following the protein precipitation, the plasma samples were evaporated under gentle stream of nitrogen and analyzed by above method. Naringin was used as an internal standard (IS). Method validation was performed according to the Chinese Food and Drug Administration guidelines. Results: A good linearity (r2 ≥ 0.9990) was showed by the UPLC – ESI – MS / MS method, the low limits of quantification for galangin, kaempferide, galangin-3-methylether, kaempferol and quercetin were 229.8, 78.8, 32.0, 123.7 and 137.8 ng / mL, respectively. The results of inter-day and intra-day precisions met the experimental requirement (< 7.8 %). The matrix effect and recovery efficiency of the five analytes were more than 72.9 and 88.7 % respectively. The stability of the analytes were satisfactory. The UPLC – ESI – MS / MS method has been used for the five analytes’ pharmacokinetics study successfully after gastrointestinal route of the Mongolian Medicine Shudage-4. The pharmacokinetic parameters showed significant differences (P < 0.05) between the normal and gastric ulcer groups. The metabolism and transport of the five analytes in gastric ulcer rates were faster than in normal rats after administration of Shudage - 4 extract. Double-peak phenomenon appeared in galangin, galangin – 3 - methylether and quercetin. Conclusion: The results suggest that the metabolism and transport of Mongolian Medicine Shudage-4 in gastric ulcer rats is faster than in normal rats and may be enriched and acted on at the lesion site. Keywords: UPLC – ESI – MS / MS; Mongolian medicine; Shudage - 4; pharmacokinetics; gastric ulcer


Drug Research ◽  
2020 ◽  
Vol 70 (05) ◽  
pp. 233-238
Author(s):  
Ashok Zakkula ◽  
Shobha Pulipati ◽  
Sreekanth Dittakavi ◽  
Ram Murthi Bestha ◽  
Mohd Zainuddin ◽  
...  

AbstractFilgotinib is a selective JAK1 (Janus kinase) inhibitor, filed in Japan for the treatment of rheumatoid arthritis. In this paper, we present the data of development and validation of a high-performance liquid chromatography (HPLC) method for the quantitation of filgotinib in mice plasma as per the FDA regulatory guideline. The method involves the extraction of filgotinib along with internal standard (IS, tofacitinib) from mice plasma (100 µL) using ethyl acetate as an extraction solvent. The chromatographic analysis was performed using an isocratic mobile phase comprising 10 mM ammonium acetate (pH 4.5) and acetonitrile (70:30, v/v) at a flow-rate of 0.8 mL/min on a Hypersil Gold C18 column. The UV detection wavelength was set at λmax 300 nm. Filgotinib and the IS eluted at 5.56 and 4.28 min, respectively with a total run time of 10 min. The calibration curve was linear over a concentration range of 0.05 to 5.00 μg/mL (r 2+=≥0.992). The intra- and inter-day precision and accuracy results were within the acceptable limits. Results of stability studies indicated that filgotinib was stable on bench-top, in auto-sampler, up to three freeze/thaw cycles and long-term storage at −80°C. The validated HPLC method was successfully applied to a pharmacokinetic study in mice.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Yan-yun Yang ◽  
Liang Xu ◽  
Song-yao Hao ◽  
Yan Li ◽  
Zhen-Qiu Zhang

A sensitive HPLC method was developed for the quantitative determination of isoliquiritin apioside (ILA) and isoliquiritin (IL) in rat plasma. After protein precipitation with acetonitrile, chloroform was used to separate lipid-soluble impurities from the plasma samples and remove acetonitrile. A chromatography was carried out on Diamonsil C18 (150×4.6 mm; 5 μm) analytical column, using a mobile phase consisting of water (containing phosphoric acid 0.1%, v/v); acetonitrile (72 : 28, v/v) at a flow rate of 1.0 mL/min. The wavelength-switching technology was performed to determine ILA and IL at 360 nm and wogonoside (internal standard, IS) at 276 nm. The calibration curves of ILA and IL were fairly linear over the concentration ranges of 0.060–3.84 μg/mL (r=0.9954) and 0.075–4.80 μg/mL (r=0.9968), respectively. The average extract recoveries of ILA, IL, and IS were all over 80%. The precision and accuracy for all concentrations of quality controls and standards were within 15%. The lower limit of quantification (LLOQ) was 0.060 μg/mL for ILA and 0.075 μg/mL for IL. The method was used in pharmacokinetic study after an oral administration of Zhigancao extract to rats.


Author(s):  
Ahmed K. Kammoun ◽  
Zuhier Ahmed Awan ◽  
Tarek Elawady ◽  
Alaa Khedr ◽  
Mohamed I. El-Awady

AbstractAlthough glimepiride (GLM) is the first-line treatment of Type II diabetes, low extraction recovery is still a significant limitation in previous plasma analysis methods. An optimized solid-phase extraction method of GLM in human plasma with excellent extraction recovery, 100 ± 0.06%, was achieved using liquid chromatography-electrospray ionization tandem mass spectrometry and Gliclazide (GLZ) as an internal standard. GLM was extracted from 100 µL plasma sample using Sep-Pak® vac 1cc (100 mg) C18 column and methylene chloride: methanol (2: 1, v/v) as eluant. Both GLM and GLZ were monitored by a triple quad mass spectrometer applying positive multiple reaction monitoring mode (+MRM). The protonated precursor ions and product ions of GLM and GLZ were m/z 491(352), and m/z 324 (127), respectively. The detection and measurement of low levels of GLM in human plasma reached to picogram range (limit of detection (LOD) = 60 pg/mL, limit of quantification (LOQ) = 200 pg/mL). The method was validated in terms of selectivity, linearity, recovery, accuracy, and precision. The method was successfully applied to the pharmacokinetic study of GLM following oral administration of 1 mg GLM tablets to 12 healthy volunteers.


2020 ◽  
Vol 16 (8) ◽  
pp. 1140-1147
Author(s):  
Sreekanth Dittakavi ◽  
Rakesh Kumar Jat ◽  
Ramesh Mullangi

Background: Vorasidenib is a pan-IDH inhibitor, undergoing clinical trials for the treatment of acute myeloid leukemia. Methods: In this paper, we present the data of method validation to quantify vorasidenib in the mice blood mice using dried blood spot (DBS) method on LC-MS/MS as per FDA bioanalytical method validation guideline. Using methanol (enriched with internal standard) as an extraction solvent followed by sonication, vorasidenib was extracted from DBS quality control samples, calibration curve samples and pharmacokinetic study samples. Baseline separation of vorasidenib and the IS in a 2.0 μL injected sample was accomplished by delivering 0.2% formic acid and acetonitrile (25:75, v/v) at a constant flowrate (1.00 mL/min) on a C18 column. The total run time was 2.0 min. Using the transition pair of m/z 415.4→260.4 for vorasidenib and m/z 583.1→186.1 for the IS, the quantitation was performed. The method linearity range was 1.00-3008.00 ng/mL. Results: The recovery of vorasidenib ranged between 71.28%-78.14% across the tested concentrations. No matrix effect was seen. Intra- and inter-day precisions were ≤7.23% and intra- and inter-accuracies ranged between 97.1%-107%. Vorasidenib was stable for three freeze/thaw cycles, up to 7 days at room temperature and for one month at -80°C. Following intravenous and oral administration of vorasidenib to mice, it was quantifiable up to 72 h. The oral bioavailability was 51.6%. Conclusions: All the validation parameters met the acceptance criteria as specified in the FDA regulatory guideline. The results suggest that validated DBS method can be used for pharmacokinetic studies in mice to characterize the pharmacokinetic parameters of vorasidenib post intravenous and oral administration.


2020 ◽  
Vol 16 (8) ◽  
pp. 1106-1112
Author(s):  
Ibrahim A. Darwish ◽  
Nasr Y. Khalil ◽  
Mohammad AlZeer

Background: Axitinib (AXT) is a member of the new generation of the kinase inhibitor indicated for the treatment of advanced renal cell carcinoma. Its therapeutic benefits depend on assuring the good-quality of its dosage forms in terms of content and stability of the pharmaceutically active ingredient. Objective: This study was devoted to the development of a simple, sensitive and accurate stabilityindicating high-performance liquid chromatographic method with ultraviolet detection (HPLC-UV) for the determination of AXT in its bulk and dosage forms. Methods: Waters HPLC system was used. The chromatographic separation of AXT, internal standard (olaparib), and degradation products were performed on the Nucleosil CN column (250 × 4.6 mm, 5 μm). The mobile phase consisted of water:acetonitrile:methanol (40:40:20, v/v/v) with a flow rate of 1 ml/min, and the UV detector was set at 225 nm. AXT was subjected to different accelerated stress conditions and the degradation products, when any, were completely resolved from the intact AXT. Results: The method was linear (r = 0.9998) in the concentration range of 5-50 μg/ml. The limits of detection and quantitation were 0.85 and 2.57 μg/ml, respectively. The accuracy of the method, measured as recovery, was in the range of 98.0-103.6% with relative standard deviations in the range of 0.06-3.43%. The results of stability testing revealed that AXT was mostly stable in neutral and oxidative conditions; however, it was unstable in alkaline and acidic conditions. The kinetics of degradation were studied, and the kinetic rate constants were determined. The proposed method was successfully applied for the determination of AXT in bulk drug and dosage forms. Conclusions: A stability-indicating HPLC-UV method was developed and validated for assessing AXT stability in its bulk and dosage forms. The method met the regulatory requirements of the International Conference on Harmonization (ICH) and the Food and Drug Administration (FDA). The results demonstrated that the method would have great value when applied in quality control and stability studies for AXT.


2021 ◽  
Vol 33 (7) ◽  
pp. 1692-1698
Author(s):  
S.S. Jadiya ◽  
N. Upmanyu ◽  
S. Arulmozhi ◽  
V. Jain ◽  
S. Sankaran ◽  
...  

In present study, an advanced, simple and a rapid reverse phase high performance liquid chromatography (RP-HPLC) method was developed for the quantitative determination of sulfasalazine in rabbit plasma. Sulfasalazine was separated using Chromatopak C-18 basic peerless (250 mm × 4.6 mm, 5μ) column in an isocratic mode using mobile phase consisting of the mixture of 10mM Ammonium acetate pH adjusted to 4.5 and acetonitrile (70:30 v/v) with a flow rate of about 1.0 mL/min at ambient temperature. An ultra-violet detection of sulfasalazine and the internal standard was carried out at 362 nm. Both sulfasalazine and internal standard (IS, 4-hydroxy benzoate) were extracted from plasma matrices with high efficiency using a simple protein precipitation method. The method was found to be highly selective with no carryover effects. Linearity of sulfasalazine was found with the range of 2.5-100 μg/mL with the value of r2 > 0.995 a correlation coefficient. At all three quality control levels, developed bioanalytical method was found as repeatable and reproducible as well. The average recoveries of sulfasalazine from plasma were in the range of 95.59-97.16%. The bioanalytical samples showed good and acceptable stability of sulfasalazine solution at different storage, packaging and handling conditions. Hence, in conclusion, the validated and developed HPLC-UV method could be effectively utilized for determination of sulfasalazine in pharmacokinetic studies involving novel formulations.


1987 ◽  
Vol 33 (8) ◽  
pp. 1450-1452 ◽  
Author(s):  
D R Luke ◽  
G R Matzke ◽  
J T Clarkson ◽  
W M Awni

Abstract This is an assay for labetalol in plasma by "high-performance" liquid chromatography, with 5-(2-[4-(4-chlorophenyl)ethyl]) salicylamide hemihydrate as the internal standard. Plasma samples (500 microL) are extracted with acetonitrile, evaporated under nitrogen, reconstituted in the mobile phase, and injected onto a PRP-1 (Hamilton) column packed with particles of poly(styrene-divinylbenzene) copolymer. Fluorescence, enhanced by post-column introduction of NH4OH, was measured in the effluent (excitation wavelength 340 nm, emission wavelength 418 nm). Retention times for labetalol and the internal standard were 1.99 and 3.32 min, respectively. Inter- and intraday CVs for high and low concentrations of the drug were less than 7.5%. The assay standard curve is linear from 1 to 250 micrograms/L. Some commonly co-administered drugs were tested and did not interfere.


Sign in / Sign up

Export Citation Format

Share Document