scholarly journals Characterization of Phosphorylated Proteins Using Mass Spectrometry

Author(s):  
Li-Rong Yu ◽  
Timothy D. Veenstra

Abstract:: Phosphorylation is arguably the most important post-translational modification that occurs within proteins. Phosphorylation is used as a signal to control numerous physiological activities ranging from gene expression to metabo-lism. Identifying phosphorylation sites within proteins was historically a challenge as it required either radioisotope label-ing or the use of phospho-specific antibodies. The advent of mass spectrometry (MS) has had a major impact on the abil-ity to qualitatively and quantitatively characterize phosphorylated proteins. In this article we describe MS methods for characterizing phosphorylation sites within individual proteins as well as entire proteome samples. The utility of these methods is illustrated in examples that show the information that can be gained using these MS techniques.

2005 ◽  
Vol 25 (1-2) ◽  
pp. 33-44 ◽  
Author(s):  
Roberto Raggiaschi ◽  
Stefano Gotta ◽  
Georg C. Terstappen

Protein phosphorylation is directly or indirectly involved in all important cellular events. The understanding of its regulatory role requires the discovery of the proteins involved in these processes and how, where and when protein phosphorylation takes place. Investigation of the phosphoproteome of a cell is becoming feasible today although it still represents a very difficult task especially if quantitative comparisons have to be made. Several different experimental strategies can be employed to explore phosphoproteomes and this review will cover the most important ones such as incorporation of radiolabeled phosphate into proteins, application of specific antibodies against phosphorylated residues and direct staining of phosphorylated proteins in polyacrylamide gels. Moreover, methods to enrich phosphorylated proteins such as affinity chromatography (IMAC) and immunoprecipitation as well as mass spectrometry for identification of phosphorylated peptides and phosphorylation sites are also described.


Author(s):  
Lok Man ◽  
William P. Klare ◽  
Ashleigh L. Dale ◽  
Joel A. Cain ◽  
Stuart J. Cordwell

Despite being considered the simplest form of life, bacteria remain enigmatic, particularly in light of pathogenesis and evolving antimicrobial resistance. After three decades of genomics, we remain some way from understanding these organisms, and a substantial proportion of genes remain functionally unknown. Methodological advances, principally mass spectrometry (MS), are paving the way for parallel analysis of the proteome, metabolome and lipidome. Each provides a global, complementary assay, in addition to genomics, and the ability to better comprehend how pathogens respond to changes in their internal (e.g. mutation) and external environments consistent with infection-like conditions. Such responses include accessing necessary nutrients for survival in a hostile environment where co-colonizing bacteria and normal flora are acclimated to the prevailing conditions. Multi-omics can be harnessed across temporal and spatial (sub-cellular) dimensions to understand adaptation at the molecular level. Gene deletion libraries, in conjunction with large-scale approaches and evolving bioinformatics integration, will greatly facilitate next-generation vaccines and antimicrobial interventions by highlighting novel targets and pathogen-specific pathways. MS is also central in phenotypic characterization of surface biomolecules such as lipid A, as well as aiding in the determination of protein interactions and complexes. There is increasing evidence that bacteria are capable of widespread post-translational modification, including phosphorylation, glycosylation and acetylation; with each contributing to virulence. This review focuses on the bacterial genotype to phenotype transition and surveys the recent literature showing how the genome can be validated at the proteome, metabolome and lipidome levels to provide an integrated view of organism response to host conditions.


2002 ◽  
Vol 1 (7) ◽  
pp. 517-527 ◽  
Author(s):  
Mads Grønborg ◽  
Troels Zakarias Kristiansen ◽  
Allan Stensballe ◽  
Jens S. Andersen ◽  
Osamu Ohara ◽  
...  

PROTEOMICS ◽  
2006 ◽  
Vol 6 (13) ◽  
pp. 3754-3766 ◽  
Author(s):  
Virginie Molle ◽  
Isabelle Zanella-Cleon ◽  
Jean-Philippe Robin ◽  
Souen Mallejac ◽  
Alain J. Cozzone ◽  
...  

PROTEOMICS ◽  
2006 ◽  
Vol 6 (S1) ◽  
pp. S16-S27 ◽  
Author(s):  
Margarita Villar ◽  
Inmaculada Ortega-Pérez ◽  
Felipe Were ◽  
Eva Cano ◽  
Juan Miguel Redondo ◽  
...  

2003 ◽  
Vol 370 (3) ◽  
pp. 737-749 ◽  
Author(s):  
Annemieke J.M. de RUIJTER ◽  
Albert H. van GENNIP ◽  
Huib N. CARON ◽  
Stephan KEMP ◽  
André B.P. van KUILENBURG

Transcriptional regulation in eukaryotes occurs within a chromatin setting, and is strongly influenced by the post-translational modification of histones, the building blocks of chromatin, such as methylation, phosphorylation and acetylation. Acetylation is probably the best understood of these modifications: hyperacetylation leads to an increase in the expression of particular genes, and hypoacetylation has the opposite effect. Many studies have identified several large, multisubunit enzyme complexes that are responsible for the targeted deacetylation of histones. The aim of this review is to give a comprehensive overview of the structure, function and tissue distribution of members of the classical histone deacetylase (HDAC) family, in order to gain insight into the regulation of gene expression through HDAC activity. SAGE (serial analysis of gene expression) data show that HDACs are generally expressed in almost all tissues investigated. Surprisingly, no major differences were observed between the expression pattern in normal and malignant tissues. However, significant variation in HDAC expression was observed within tissue types. HDAC inhibitors have been shown to induce specific changes in gene expression and to influence a variety of other processes, including growth arrest, differentiation, cytotoxicity and induction of apoptosis. This challenging field has generated many fascinating results which will ultimately lead to a better understanding of the mechanism of gene transcription as a whole.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Tony Ly ◽  
Arlene Whigham ◽  
Rosemary Clarke ◽  
Alejandro J Brenes-Murillo ◽  
Brett Estes ◽  
...  

The temporal regulation of protein abundance and post-translational modifications is a key feature of cell division. Recently, we analysed gene expression and protein abundance changes during interphase under minimally perturbed conditions (Ly et al., 2014, 2015). Here, we show that by using specific intracellular immunolabelling protocols, FACS separation of interphase and mitotic cells, including mitotic subphases, can be combined with proteomic analysis by mass spectrometry. Using this PRIMMUS (PRoteomic analysis of Intracellular iMMUnolabelled cell Subsets) approach, we now compare protein abundance and phosphorylation changes in interphase and mitotic fractions from asynchronously growing human cells. We identify a set of 115 phosphorylation sites increased during G2, termed ‘early risers’. This set includes phosphorylation of S738 on TPX2, which we show is important for TPX2 function and mitotic progression. Further, we use PRIMMUS to provide the first a proteome-wide analysis of protein abundance remodeling between prophase, prometaphase and anaphase.


Sign in / Sign up

Export Citation Format

Share Document