Novel Sequence Features of Leucine-rich Repeats in Proteins from Nucleo-cytoplasmic Large DNA Viruses

Author(s):  
Norio Matsushima ◽  
Robert H. Kretsinger

: Leucine-rich repeats (LRRs) occurring in tandem are 20-29 amino acids long. Eleven LRR types have been recognized. Sequence features of LRRs from viruses were investigated using over 600 LRR proteins from 89 species. Before, metagenome data of nucleo-cytoplasmic large dsDNA viruses (NCLDVs) have been published; the 2,074 NCLDVs encode 199,021 proteins. From the NCLDVs, 549 LRR proteins were identified and analyzed. A comprehensive analysis of TpLRR and FNIP that belong to an LRR class was first performed. The repeating unit lengths (RULs) in five types are 19 residues, which are the shortest among all LRRs. Some RULs are one to five residues shorter than those of the known, corresponding LRR types. The shrinking of RUL is also observed in FNIP. The conserved hydrophobic residues, such as Leu, Val or Ile, in the consensus sequences are frequently substituted by cysteine at one or two positions. Some unique LRR types that are different from those identified previously have been observed. The present study confirms the previous result that the sequence novelty is a general feature of viral LRR proteins.

2015 ◽  
Vol 81 (11) ◽  
pp. 3679-3687 ◽  
Author(s):  
Dongdong Mu ◽  
Manuel Montalbán-López ◽  
Jingjing Deng ◽  
Oscar P. Kuipers

ABSTRACTLantibiotics are potent antimicrobial peptides characterized by the presence of dehydrated amino acids, dehydroalanine and dehydrobutyrine, and (methyl)lanthionine rings. In addition to these posttranslational modifications, some lantibiotics exhibit additional modifications that usually confer increased biological activity or stability on the peptide. LtnJ is a reductase responsible for the introduction ofd-alanine in the lantibiotic lacticin 3147. The conversion ofl-serine intod-alanine requires dehydroalanine as the substrate, which is producedin vivoby the dehydration of serine by a lantibiotic dehydratase, i.e., LanB or LanM. In this work, we probe the substrate specificity of LtnJ using a system that combines the nisin modification machinery (dehydratase, cyclase, and transporter) and the stereospecific reductase LtnJ inLactococcus lactis. We also describe an improvement in the production yield of this system by inserting a putative attenuator from the nisin biosynthesis gene cluster in front of theltnJgene. In order to clarify the sequence selectivity of LtnJ, peptides composed of truncated nisin and different mutated C-terminal tails were designed and coexpressed with LtnJ and the nisin biosynthetic machinery. In these tails, serine was flanked by diverse amino acids to determine the influence of the surrounding residues in the reaction. LtnJ successfully hydrogenated peptides when hydrophobic residues (Leu, Ile, Phe, and Ala) were flanking the intermediate dehydroalanine, while those in which dehydroalanine was flanked by one or two polar residues (Ser, Thr, Glu, Lys, and Asn) or Gly were either less prone to be modified by LtnJ or not modified at all. Moreover, our results showed that dehydrobutyrine cannot serve as a substrate for LtnJ.


1997 ◽  
Vol 17 (1) ◽  
pp. 115-122 ◽  
Author(s):  
M B Sainz ◽  
S A Goff ◽  
V L Chandler

C1 is a transcriptional activator of genes encoding biosynthetic enzymes of the maize anthocyanin pigment pathway. C1 has an amino terminus homologous to Myb DNA-binding domains and an acidic carboxyl terminus that is a transcriptional activation domain in maize and yeast cells. To identify amino acids critical for transcriptional activation, an extensive random mutagenesis of the C1 carboxyl terminus was done. The C1 activation domain is remarkably tolerant of amino acid substitutions, as changes at 34 residues had little or no effect on transcriptional activity. These changes include introduction of helix-incompatible amino acids throughout the C1 activation domain and alteration of most single acidic amino acids, suggesting that a previously postulated amphipathic alpha-helix is not required for activation. Substitutions at two positions revealed amino acids important for transcriptional activation. Replacement of leucine 253 with a proline or glutamine resulted in approximately 10% of wild-type transcriptional activation. Leucine 253 is in a region of C1 in which several hydrophobic residues align with residues important for transcriptional activation by the herpes simplex virus VP16 protein. However, changes at all other hydrophobic residues in C1 indicate that none are critical for C1 transcriptional activation. The other important amino acid in C1 is aspartate 262, as a change to valine resulted in only 24% of wild-type transcriptional activation. Comparison of our C1 results with those from VP16 reveal substantial differences in which amino acids are required for transcriptional activation in vivo by these two acidic activation domains.


2020 ◽  
Author(s):  
Gabriel J Starrett ◽  
Michael J Tisza ◽  
Nicole L Welch ◽  
Anna K Belford ◽  
Alberto Peretti ◽  
...  

Abstract Polintons (also known as Mavericks) were initially identified as a widespread class of eukaryotic transposons named for their hallmark type B DNA polymerase and retrovirus-like integrase genes. It has since been recognized that many polintons encode possible capsid proteins and viral genome-packaging ATPases similar to those of a diverse range of double-stranded DNA (dsDNA) viruses. This supports the inference that at least some polintons are actually viruses capable of cell-to-cell spread. At present, there are no polinton-associated capsid protein genes annotated in public sequence databases. To rectify this deficiency, we used a data-mining approach to investigate the distribution and gene content of polinton-like elements and related DNA viruses in animal genomic and metagenomic sequence datasets. The results define a discrete family-like clade of viruses with two genus-level divisions. We propose the family name Adintoviridae, connoting similarities to adenovirus virion proteins and the presence of a retrovirus-like integrase gene. Although adintovirus-class PolB sequences were detected in datasets for fungi and various unicellular eukaryotes, sequences resembling adintovirus virion proteins and accessory genes appear to be restricted to animals. Degraded adintovirus sequences are endogenized into the germlines of a wide range of animals, including humans.


Author(s):  
Norio Matsushima ◽  
Hiroki Miyashita ◽  
Shinsuke Tamaki ◽  
Robert H. Kretsinger

2020 ◽  
Vol 48 (18) ◽  
pp. 10142-10156 ◽  
Author(s):  
Darius Kazlauskas ◽  
Mart Krupovic ◽  
Julien Guglielmini ◽  
Patrick Forterre ◽  
Česlovas Venclovas

Abstract B-family DNA polymerases (PolBs) represent the most common replicases. PolB enzymes that require RNA (or DNA) primed templates for DNA synthesis are found in all domains of life and many DNA viruses. Despite extensive research on PolBs, their origins and evolution remain enigmatic. Massive accumulation of new genomic and metagenomic data from diverse habitats as well as availability of new structural information prompted us to conduct a comprehensive analysis of the PolB sequences, structures, domain organizations, taxonomic distribution and co-occurrence in genomes. Based on phylogenetic analysis, we identified a new, widespread group of bacterial PolBs that are more closely related to the catalytically active N-terminal half of the eukaryotic PolEpsilon (PolEpsilonN) than to Escherichia coli Pol II. In Archaea, we characterized six new groups of PolBs. Two of them show close relationships with eukaryotic PolBs, the first one with PolEpsilonN, and the second one with PolAlpha, PolDelta and PolZeta. In addition, structure comparisons suggested common origin of the catalytically inactive C-terminal half of PolEpsilon (PolEpsilonC) and PolAlpha. Finally, in certain archaeal PolBs we discovered C-terminal Zn-binding domains closely related to those of PolAlpha and PolEpsilonC. Collectively, the obtained results allowed us to propose a scenario for the evolution of eukaryotic PolBs.


2020 ◽  
Vol 94 (11) ◽  
Author(s):  
Shengzhong Xu ◽  
Liang Zhou ◽  
Xiaosha Liang ◽  
Yifan Zhou ◽  
Hao Chen ◽  
...  

ABSTRACT Virophages are small parasitic double-stranded DNA (dsDNA) viruses of giant dsDNA viruses infecting unicellular eukaryotes. Except for a few isolated virophages characterized by parasitization mechanisms, features of virophages discovered in metagenomic data sets remain largely unknown. Here, the complete genomes of seven virophages (26.6 to 31.5 kbp) and four large DNA viruses (190.4 to 392.5 kbp) that coexist in the freshwater lake Dishui Lake, Shanghai, China, have been identified based on environmental metagenomic investigation. Both genomic and phylogenetic analyses indicate that Dishui Lake virophages (DSLVs) are closely related to each other and to other lake virophages, and Dishui Lake large DNA viruses are affiliated with the micro-green alga-infecting Prasinovirus of the Phycodnaviridae (named Dishui Lake phycodnaviruses [DSLPVs]) and protist (protozoan and alga)-infecting Mimiviridae (named Dishui Lake large alga virus [DSLLAV]). The DSLVs possess more genes with closer homology to that of large alga viruses than to that of giant protozoan viruses. Furthermore, the DSLVs are strongly associated with large green alga viruses, including DSLPV4 and DSLLAV1, based on codon usage as well as oligonucleotide frequency and correlation analyses. Surprisingly, a nonhomologous CRISPR-Cas like system is found in DSLLAV1, which appears to protect DSLLAV1 from the parasitization of DSLV5 and DSLV8. These results suggest that novel cell-virus-virophage (CVv) tripartite infection systems of green algae, large green alga virus (Phycodnaviridae- and Mimiviridae-related), and virophage exist in Dishui Lake, which will contribute to further deep investigations of the evolutionary interaction of virophages and large alga viruses as well as of the essential roles that the CVv plays in the ecology of algae. IMPORTANCE Virophages are small parasitizing viruses of large/giant viruses. To our knowledge, the few isolated virophages all parasitize giant protozoan viruses (Mimiviridae) for propagation and form a tripartite infection system with hosts, here named the cell-virus-virophage (CVv) system. However, the CVv system remains largely unknown in environmental metagenomic data sets. In this study, we systematically investigated the metagenomic data set from the freshwater lake Dishui Lake, Shanghai, China. Consequently, four novel large alga viruses and seven virophages were discovered to coexist in Dishui Lake. Surprisingly, a novel CVv tripartite infection system comprising green algae, large green alga viruses (Phycodnaviridae- and Mimiviridae-related), and virophages was identified based on genetic link, genomic signature, and CRISPR system analyses. Meanwhile, a nonhomologous CRISPR-like system was found in Dishui Lake large alga viruses, which appears to protect the virus host from the infection of Dishui Lake virophages (DSLVs). These findings are critical to give insight into the potential significance of CVv in global evolution and ecology.


2020 ◽  
Vol 21 (20) ◽  
pp. 7632
Author(s):  
Mateusz Banach ◽  
Katarzyna Stapor ◽  
Leszek Konieczny ◽  
Piotr Fabian ◽  
Irena Roterman

Research on the protein folding problem differentiates the protein folding process with respect to the duration of this process. The current structure encoded in sequence dogma seems to be clearly justified, especially in the case of proteins referred to as fast-folding, ultra-fast-folding or downhill. In the present work, an attempt to determine the characteristics of this group of proteins using fuzzy oil drop model is undertaken. According to the fuzzy oil drop model, a protein is a specific micelle composed of bi-polar molecules such as amino acids. Protein folding is regarded as a spherical micelle formation process. The presence of covalent peptide bonds between amino acids eliminates the possibility of free mutual arrangement of neighbors. An example would be the construction of co-micelles composed of more than one type of bipolar molecules. In the case of fast folding proteins, the amino acid sequence represents the optimal bipolarity system to generate a spherical micelle. In order to achieve the native form, it is enough to have an external force field provided by the water environment which directs the folding process towards the generation of a centric hydrophobic core. The influence of the external field can be expressed using the 3D Gaussian function which is a mathematical model of the folding process orientation towards the concentration of hydrophobic residues in the center with polar residues exposed on the surface. The set of proteins under study reveals a hydrophobicity distribution compatible with a 3D Gaussian distribution, taken as representing an idealized micelle-like distribution. The structure of the present hydrophobic core is also discussed in relation to the distribution of hydrophobic residues in a partially unfolded form.


2019 ◽  
Vol 13 ◽  
pp. 117793221986336 ◽  
Author(s):  
Sailen Barik

The tetratricopeptide repeat (TPR) of proteins consists of a 34-amino acid, alpha-helical motif that comprises a pattern of small and large hydrophobic residues, leading to a recognizable signature sequence. Structural and functional studies have documented that tandem TPRs form a superhelix that interacts with client molecules through strategically placed amino acids. Interestingly, most of the known TPRs are flanked by alpha-helices that lack the TPR signature but often appear as a continuation of the TPR superhelix. The exact role and specificity of these TPR-accompanying non-TPR helices have remained a mystery. Here, starting with TPR proteins of known structure, bioinformatic analyses were conducted on these helices, which revealed that they are diverse in sequence, lacking a clear consensus. However, they display significant atomic contacts with the nearest TPR helix and, to some extent, with the next TPR helix over. The majority of these contacts do not use the signature residues of the TPR helix but rather involve hydrophobic side chains on the facing sides. Thus, compared with the TPR helices, these companion helices are generic in nature, and seem to serve as relatively passive gatekeepers, leaving the terminal TPR helices to encode the signature residues that interact with cognate clients.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Zhen Gong ◽  
Yu Zhang ◽  
Guan-Zhu Han

Abstract Little is known about the infections of double-stranded DNA (dsDNA) viruses in fungi. Here, we use a paleovirological method to systematically identify the footprints of past dsDNA virus infections within the fungal genomes. We uncover two distinct groups of endogenous nucleocytoplasmic large DNA viruses (NCLDVs) in at least seven fungal phyla (accounting for about a third of known fungal phyla), revealing an unprecedented diversity of dsDNA viruses in fungi. Interestingly, one fungal dsDNA virus lineage infecting six fungal phyla is closely related to the giant virus Pithovirus, suggesting giant virus relatives might widely infect fungi. Co-speciation analyses indicate fungal NCLDVs mainly evolved through cross-species transmission. Taken together, our findings provide novel insights into the diversity and evolution of NCLDVs in fungi.


Molecules ◽  
2020 ◽  
Vol 25 (24) ◽  
pp. 5906
Author(s):  
Sk. Sarif Hassan ◽  
Shinjini Ghosh ◽  
Diksha Attrish ◽  
Pabitra Pal Choudhury ◽  
Alaa A. A. Aljabali ◽  
...  

Angiotensin-converting enzyme 2 (ACE2) is the cellular receptor for the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) that is engendering the severe coronavirus disease 2019 (COVID-19) pandemic. The spike (S) protein receptor-binding domain (RBD) of SARS-CoV-2 binds to the three sub-domains viz. amino acids (aa) 22–42, aa 79–84, and aa 330–393 of ACE2 on human cells to initiate entry. It was reported earlier that the receptor utilization capacity of ACE2 proteins from different species, such as cats, chimpanzees, dogs, and cattle, are different. A comprehensive analysis of ACE2 receptors of nineteen species was carried out in this study, and the findings propose a possible SARS-CoV-2 transmission flow across these nineteen species.


Sign in / Sign up

Export Citation Format

Share Document