Implications of Fibroblast Growth Factors (FGFs) in Cancer: From Prognostic to Therapeutic Applications

2019 ◽  
Vol 20 (8) ◽  
pp. 852-870
Author(s):  
Hassan Dianat-Moghadam ◽  
Ladan Teimoori-Toolabi

Fibroblast growth factors (FGFs) are pleiotropic molecules exerting autocrine, intracrine and paracrine functions via activating four tyrosine kinase FGF receptors (FGFR), which further trigger a variety of cellular processes including angiogenesis, evasion from apoptosis, bone formation, embryogenesis, wound repair and homeostasis. Four major mechanisms including angiogenesis, inflammation, cell proliferation, and metastasis are active in FGF/FGFR-driven tumors. Furthermore, gain-of-function or loss-of-function in FGFRs1-4 which is due to amplification, fusions, mutations, and changes in tumor–stromal cells interactions, is associated with the development and progression of cancer. Although, the developed small molecule or antibodies targeting FGFR signaling offer immense potential for cancer therapy, emergence of drug resistance, activation of compensatory pathways and systemic toxicity of modulators are bottlenecks in clinical application of anti-FGFRs. In this review, we present FGF/FGFR structure and the mechanisms of its function, as well as cross-talks with other nodes and/or signaling pathways. We describe deregulation of FGF/FGFR-related mechanisms in human disease and tumor progression leading to the presentation of emerging therapeutic approaches, resistance to FGFR targeting, and clinical potentials of individual FGF family in several human cancers. Additionally, the underlying biological mechanisms of FGF/FGFR signaling, besides several attempts to develop predictive biomarkers and combination therapies for different cancers have been explored.

2004 ◽  
Vol 26 (1) ◽  
pp. 63-77 ◽  
Author(s):  
Ralph T. Böttcher ◽  
Christof Niehrs

Fibroblast growth factors (FGFs) have been implicated in diverse cellular processes including apoptosis, cell survival, chemotaxis, cell adhesion, migration, differentiation, and proliferation. This review presents our current understanding on the roles of FGF signaling, the pathways employed, and its regulation. We focus on FGF signaling during early embryonic processes in vertebrates, such as induction and patterning of the three germ layers as well as its function in the control of morphogenetic movements.


2016 ◽  
Vol 62 (6) ◽  
pp. 622-629 ◽  
Author(s):  
D.A. Gnatenko ◽  
E.P. Kopantsev ◽  
E.D. Sverdlov

Fibroblast growth factors belong to a family of growth factors that are involved in various processes in organism and have a wide range of biological functions. Specifically for pancreas, FGFs are important during both organogenesis and carcinogenesis. One of the main characteristic of pancreatic cancer, is it close interaction between cancer and stromal cells via different factors, including FGF. Pathological changes in FGF/FGFR signaling pathway is a complex process. The remodeling effects and stimulation of tumor growth are mostly depend not only on types of receptors, but also from their isoforms. FGF/FGFR signaling pathway is a perspective specific marker for cancer progression, and a potential drug target, which can be used for treatment of pancreatic cancer.


2000 ◽  
Vol 5 (3) ◽  
pp. 179-190 ◽  
Author(s):  
PAUL V. WOOLLEY ◽  
SUSANNE M. GOLLIN ◽  
WAHEEB RISKALLA ◽  
SYDNEY FINKELSTEIN ◽  
DAVID F. STEFANIK ◽  
...  

1988 ◽  
Vol 263 (2) ◽  
pp. 988-993 ◽  
Author(s):  
S R Coughlin ◽  
P J Barr ◽  
L S Cousens ◽  
L J Fretto ◽  
L T Williams

Sign in / Sign up

Export Citation Format

Share Document