Deformation-based Statistical Shape Analysis of the Corpus Callosum in Mild Cognitive Impairment and Alzheimer’s Disease

2018 ◽  
Vol 15 (12) ◽  
pp. 1151-1160 ◽  
Author(s):  
Zihan Jiang ◽  
Huilin Yang ◽  
Xiaoying Tang

Objective: In this study, we investigated the influence that the pathology of Alzheimer’s disease (AD) exerts upon the corpus callosum (CC) using a total of 325 mild cognitive impairment (MCI) subjects, 155 AD subjects, and 185 healthy control (HC) subjects. Method: Regionally-specific morphological CC abnormalities, as induced by AD, were quantified using a large deformation diffeomorphic metric curve mapping based statistical shape analysis pipeline. We also quantified the association between the CC shape phenotype and two cognitive measures; the Mini Mental State Examination (MMSE) and the Alzheimer’s Disease Assessment Scale-Cognitive Behavior Section (ADAS-cog). To identify AD-relevant areas, CC was sub-divided into three subregions; the genu, body, and splenium (gCC, bCC, and sCC). Results: We observed significant shape compressions in AD relative to that in HC, mainly concentrated on the superior part of CC, across all three sub-regions. The HC-vs-MCI shape abnormalities were also concentrated on the superior part, but mainly occurred on bCC and sCC. The significant MCI-vs-AD shape differences, however, were only detected in part of sCC. In the shape-cognition association, significant negative correlations to ADAS-cog were detected for shape deformations at regions belonging to gCC and sCC and significant positive correlations to MMSE at regions mainly belonging to sCC. Conclusion: Our results suggest that the callosal shape deformation patterns, especially those of sCC, linked tightly to the cognitive decline in AD, and are potentially a powerful biomarker for monitoring the progression of AD.

Author(s):  
Zahra Ayati ◽  
Guoyan Yang ◽  
Mohammad Hossein Ayati ◽  
Seyed Ahmad Emami ◽  
Dennis Chang

Abstract Background Saffron (stigma of Crocus sativus L.) from Iridaceae family is a well-known traditional herbal medicine that has been used for hundreds of years to treat several diseases such as depressive mood, cancer and cardiovascular disorders. Recently, anti-dementia property of saffron has been indicated. However, the effects of saffron for the management of dementia remain controversial. The aim of the present study is to explore the effectiveness and safety of saffron in treating mild cognitive impairment and dementia. Methods An electronic database search of some major English and Chinese databases was conducted until 31st May 2019 to identify relevant randomised clinical trials (RCT). The primary outcome was cognitive function and the secondary outcomes included daily living function, global clinical assessment, quality of life (QoL), psychiatric assessment and safety. Rev-Man 5.3 software was applied to perform the meta-analyses. Results A total of four RCTs were included in this review. The analysis revealed that saffron significantly improves cognitive function measured by the Alzheimer’s Disease Assessment Scale-cognitive subscale (ADAS-cog) and Clinical Dementia Rating Scale-Sums of Boxes (CDR-SB), compared to placebo groups. In addition, there was no significant difference between saffron and conventional medicine, as measured by cognitive scales such as ADAS-cog and CDR-SB. Saffron improved daily living function, but the changes were not statistically significant. No serious adverse events were reported in the included studies. Conclusions Saffron may have the potential to improve cognitive function and activities of daily living in patients with Alzheimer’s disease and mild cognitive impairment (MCI). However, due to limited high-quality studies there is insufficient evidence to make any recommendations for clinical use. Further clinical trials on larger sample sizes are warranted to shed more light on its efficacy and safety.


2004 ◽  
Vol 25 ◽  
pp. S278
Author(s):  
Paul Wang ◽  
Andrew J. Saykin ◽  
Laura A. Flashman ◽  
Heather A. Wishart ◽  
Laura A. Rabin ◽  
...  

2021 ◽  
Vol 18 ◽  
Author(s):  
Yuanyuan Wei ◽  
Nianwei Huang ◽  
Yong Liu ◽  
Xi Zhang ◽  
Silun Wang ◽  
...  

Background: Early detection of Alzheimer’s disease (AD) and its early stage, the mild cognitive impairment (MCI), has important scientific, clinical and social significance. Magnetic resonance imaging (MRI) based statistical shape analysis provides an opportunity to detect regional structural abnormalities of brain structures caused by AD and MCI. Objective: In this work, we aimed to employ a well-established statistical shape analysis pipeline, in the framework of large deformation diffeomorphic metric mapping, to identify and quantify the regional shape abnormalities of the bilateral hippocampus and amygdala at different prodromal stages of AD, using three Chinese MRI datasets collected from different domestic hospitals. Methods: We analyzed the region-specific shape abnormalities at different stages of the neuropathology of AD by comparing the localized shape characteristics of the bilateral hippocampi and amygdalas between healthy controls and two disease groups (MCI and AD). In addition to group comparison analyses, we also investigated the association between the shape characteristics and the Mini Mental State Examination (MMSE) of each structure of interest in the disease group (MCI and AD combined) as well as the discriminative power of different morphometric biomarkers. Results: We found the strongest disease pathology (regional atrophy) at the subiculum and CA1 subregions of the hippocampus and the basolateral, basomedial as well as centromedial subregions of the amygdala. Furthermore, the shape characteristics of the hippocampal and amygdalar subregions exhibiting the strongest AD related atrophy were found to have the most significant positive associations with the MMSE. Employing the shape deformation marker of the hippocampus or the amygdala for automated MCI or AD detection yielded a significant accuracy boost over the corresponding volume measurement. Conclusion: Our results suggested that the amygdalar and hippocampal morphometrics, especially those of shape morphometrics, can be used as auxiliary indicators for monitoring the disease status of an AD patient.


2020 ◽  
Author(s):  
Sang Won Seo ◽  
Seung Joo Kim ◽  
Sook-Young Woo ◽  
Young Ju Kim ◽  
Yeshin Kim ◽  
...  

Abstract Background: Few studies have investigated cognitive trajectories or developed a prediction model for amyloid beta-positive (Aβ+) mild cognitive impairment (MCI) patients. We aimed to identify distinct cognitive trajectories in Aβ+ MCI patients based on longitudinal Alzheimer’s Disease Assessment Scale-Cognitive subscale (ADAS-cog) 13 scores. Furthermore, we aimed to develop and visualize a prediction model to predict trajectory groups using the demographic, genetic, and clinical biomarkers of Aβ+ MCI patients.Methods: We performed a retrospective analysis of the data in 238 Aβ+ MCI patients from the Alzheimer’s Disease Neuroimaging Initiative who underwent at least three rounds of annual neuropsychological testing to identify cognitive trajectories. A group-based trajectory model (GBTM) was used to classify distinct groups based on ADAS-cog 13 scores. The prediction model was estimated using multinomial logistic regression and visualized using a bar-based method for risk prediction. Results: Three distinct classes, namely slow decliners (18.5%), intermediate decliners (42.9%), and fast decliners (38.7%), were suggested. Intermediate decliners were associated with higher age (≥70 years) (odds ratio [OR] 2.72, 95% confidence interval [CI] 1.78-6.28), higher AV45 standardized uptake value ratios (SUVRs)*10 (OR 1.69, 95% CI 1.22-2.34), and lower fluorodeoxyglucose (FDG) SUVR*10 (OR 0.65, 95% CI 0.46-0.93) than slow decliners. Fast decliners were associated with higher age (≥70 years) (OR 3.76, 95% CI 1.40-10.10), greater likelihood of being an apolipoprotein E 4 carrier (OR 4.2, 95% CI 1.53-11.58), higher AV45 positron emission tomography SUVR*10 (OR 2.14, 95% CI 1.50-3.05), and lower FDG SUVR*10 (OR 0.31, 95% CI 0.20-0.48) than slow decliners. The predicted probability of being classified to a trajectory group according to the risk scores of predictors was visualized.Conclusions: Our GBTM analysis yielded novel insights into the heterogeneous cognitive trajectories among Aβ+ MCI patients, which further facilitates the effective stratification of Aβ+ MCI patients in Aβ-targeted clinical trials.


2021 ◽  
Vol 84 (6) ◽  
pp. 472-480
Author(s):  
Yulin Luo ◽  
Li Tan ◽  
Joseph Therriault ◽  
Hua Zhang ◽  
Ying Gao ◽  
...  

<b><i>Background:</i></b> Apolipoprotein E (<i>APOE</i>) ε4 is highly associated with mild cognitive impairment (MCI). However, the specific influence of <i>APOE</i> ε4 status on tau pathology and cognitive decline in early MCI (EMCI) and late MCI (LMCI) is poorly understood. Our goal was to evaluate the association of <i>APOE</i> ε4 with cerebrospinal fluid (CSF) tau levels and cognition in EMCI and LMCI patients in the Alzheimer’s Disease Neuroimaging Initiative database, and whether this association was mediated by amyloid-β (Aβ). <b><i>Methods:</i></b> Participants were 269 cognitively normal (CN), 262 EMCI, and 344 LMCI patients. They underwent CSF Aβ42 and tau detection, <i>APOE</i> ε4 genotyping, Mini-Mental State Examination, (MMSE), and Alzheimer’s disease assessment scale (ADAS)-cog assessments. Linear regressions were used to examine the relation of <i>APOE</i> ε4 and CSF tau levels and cognitive scores in persons with and without Aβ deposition (Aβ+ and Aβ−). <b><i>Results:</i></b> The prevalence of <i>APOE</i> ε4 is higher in EMCI and LMCI than in CN (<i>p</i> &#x3c; 0.001 for both), and in LMCI than in EMCI (<i>p</i> = 0.001). <i>APOE</i> ε4 allele was significantly higher in Aβ+ subjects than in Aβ− subjects (<i>p</i> &#x3c; 0.001). Subjects who had a lower CSF Aβ42 level and were <i>APOE</i> ε4-positive experienced higher levels of CSF tau and cognitive scores in EMCI and/or LMCI. <b><i>Conclusions:</i></b> An <i>APOE</i> ε4 allele is associated with increased CSF tau and worse cognition in both EMCI and LMCI, and this association may be mediated by Aβ. We conclude that <i>APOE</i> ε4 may be an important mediator of tau pathology and cognition in the early stages of AD.


Antioxidants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1839
Author(s):  
Chieh-Hsin Lin ◽  
Hsien-Yuan Lane

Glutathione (GSH) is a major endogenous antioxidant. Several studies have shown GSH redox imbalance and altered GSH levels in Alzheimer’s disease (AD) patients. Early detection is crucial for the outcome of AD. However, whether GSH can serve as a biomarker during the very early-phase of AD, such as mild cognitive impairment (MCI), remains unknown. The current prospective study aimed to examine the longitudinal change in plasma GSH concentration and its influence on cognitive decline in MCI. Overall, 49 patients with MCI and 16 healthy individuals were recruited. Plasma GSH levels and cognitive function, measured by the Mini-Mental Status Examination (MMSE) and Alzheimer’s disease assessment scale-cognitive subscale (ADAS-cog), were monitored every 6 months. We employed multiple regressions to examine the role of GSH level in cognitive decline in the 2 years period. The MCI patients showed significant decline in plasma GSH levels and cognitive function from baseline to endpoint (month 24). In comparison, the healthy individuals’ GSH concentration and cognitive function did not change significantly. Further, both GSH level at baseline and GSH level change from baseline to endpoint significantly influenced cognitive decline among the MCI patients. To our knowledge, this is the first study to demonstrate that both plasma GSH levels and cognitive function declined 2 years later among the MCI patients in a prospective manner. If replicated by future studies, blood GSH concentration may be regarded as a biomarker for monitoring cognitive change in MCI.


Sign in / Sign up

Export Citation Format

Share Document