Genetic Variants and Oxidative Stress in Alzheimer’s Disease

2020 ◽  
Vol 17 (3) ◽  
pp. 208-223 ◽  
Author(s):  
Marta Kowalska ◽  
Katarzyna Wize ◽  
Michał Prendecki ◽  
Margarita Lianeri ◽  
Wojciech Kozubski ◽  
...  

: In an aging society, the number of people suffering from Alzheimer's Disease (AD) is still growing. Currently, intensive research is being carried out on the pathogenesis of AD. The results of these studies indicated that oxidative stress plays an important role in the onset and development of this disease. Moreover, in AD oxidative stress is generated by both genetic and biochemical factors as well as the functioning of the systems responsible for their formation and removal. The genetic factors associated with the regulation of the redox system include TOMM40, APOE, LPR, MAPT, APP, PSEN1 and PSEN2 genes. The most important biochemical parameters related to the formation of oxidative species in AD are p53, Homocysteine (Hcy) and a number of others. The formation of Reactive Oxygen Species (ROS) is also related to the efficiency of the DNA repair system, the effectiveness of the apoptosis, autophagy and mitophagy processes as well as the antioxidant potential. However, these factors are responsible for the development of many disorders, often with similar clinical symptoms, especially in the early stages of the disease. The discovery of markers of the early diagnosis of AD may contribute to the introduction of pharmacotherapy and slow down the progression of this disease.

2010 ◽  
Vol 5 (1) ◽  
pp. 17 ◽  
Author(s):  
Paula I Moreira ◽  

Oxidative stress and mitochondrial dysfunction are important issues in understanding the pathogenesis of Alzheimer's disease (AD). Mitochondria are pivotal in controlling cell life and death not only by producing adenosine triphosphate and sequestering calcium but also by generating reactive oxidative species and serving as repositories for proteins that regulate the intrinsic apoptotic pathway. Perturbations in the physiological function of mitochondria inevitably disturb cell function, sensitise cells to neurotoxic insults and may initiate cell death, all significant phenomena in the pathogenesis of AD. This article discusses evidence supporting the notion that mitochondrial dysfunction and oxidative stress are intimately involved in AD pathophysiology.


2020 ◽  
Vol 16 ◽  
Author(s):  
Nataly Guzmán-Herrera ◽  
Viridiana C. Pérez-Nájera ◽  
Luis A. Salazar-Olivo

Background: Numerous studies have shown a significant association between type 2 diabetes mellitus (T2D) and Alzheimer's disease (AD), two pathologies affecting millions of people worldwide. Chronic inflammation and oxidative stress are two conditions common to these diseases also affecting the activity of the serpin alpha-1-antichymotrypsin (ACT), but a possible common role for this serpin in T2D and AD remains unclear. Objective: To explore the possible regulatory networks linking ACT to T2D and AD. Materials and Methods: A bibliographic search was carried out in PubMed, Med-line, Open-i, ScienceDirect, Scopus and SpringerLink for data indicating or suggesting association among T2D, AD, and ACT. Searched terms like “alpha-1-antichymotrypsin”, “type 2 diabetes”, “Alzheimer's disease”, “oxidative stress”, “pro-inflammatory mediators” among others were used. Moreover, common therapeutic strategies between T2D and AD as well as the use of ACT as a therapeutic target for both diseases were included. Results: ACT has been linked with development and maintenance of T2D and AD and studies suggest their participation through activation of inflammatory pathways and oxidative stress, mechanisms also associated with both diseases. Likewise, evidences indicate that diverse therapeutic approaches are common to both diseases. Conclusion: Inflammatory and oxidative stresses constitute a crossroad for T2D and AD where ACT could play an important role. In-depth research on ACT involvement in these two dysfunctions could generate new therapeutic strategies for T2D and AD.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Nesrine S. El Sayed ◽  
Mamdooh H. Ghoneum

Background. Many neurodegenerative diseases such as Alzheimer’s disease are associated with oxidative stress. Therefore, antioxidant therapy has been suggested for the prevention and treatment of neurodegenerative diseases. Objective. We investigated the ability of the antioxidant Antia to exert a protective effect against sporadic Alzheimer’s disease (SAD) induced in mice. Antia is a natural product that is extracted from the edible yamabushitake mushroom, the gotsukora and kothala himbutu plants, diosgenin (an extract from wild yam tubers), and amla (Indian gooseberry) after treatment with MRN-100. Methods. Single intracerebroventricular (ICV) injection of streptozotocin (STZ) (3 mg/kg) was used for induction of SAD in mice. Antia was injected intraperitoneally (i.p.) in 3 doses (25, 50, and 100 mg/kg/day) for 21 days. Neurobehavioral tests were conducted within 24 h after the last day of injection. Afterwards, mice were sacrificed and their hippocampi were rapidly excised, weighed, and homogenized to be used for measuring biochemical parameters. Results. Treatment with Antia significantly improved mice performance in the Morris water maze. In addition, biochemical analysis showed that Antia exerted a protective effect for several compounds, including GSH, MDA, NF-κB, IL-6, TNF-α, and amyloid β. Further studies with western blot showed the protective effect of Antia for the JAK2/STAT3 pathway. Conclusions. Antia exerts a significant protection against cognitive dysfunction induced by ICV-STZ injection. This effect is achieved through targeting of the amyloidogenic, inflammatory, and oxidative stress pathways. The JAK2/STAT3 pathway plays a protective role for neuroinflammatory and neurodegenerative diseases such as SAD.


2020 ◽  
Vol 4 (1) ◽  
pp. 525-536
Author(s):  
Steven J. Madsen ◽  
Phillip S. DiGiacomo ◽  
Yitian Zeng ◽  
Maged Goubran ◽  
Yuanxin Chen ◽  
...  

Background: Recent evidence suggests that the accumulation of iron, specifically ferrous Fe2+, may play a role in the development and progression of neurodegeneration in Alzheimer’s disease (AD) through the production of oxidative stress. Objective: To localize and characterize iron deposition and oxidation state in AD, we analyzed human hippocampal autopsy samples from four subjects with advanced AD that have been previously characterized with correlative MRI-histology. Methods: We perform scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and electron energy loss spectroscopy (EELS) in the higher resolution transmission electron microscope on the surface and cross-sections of specific iron-rich regions of interest. Results: Specific previously analyzed regions were visualized using SEM and confirmed to be iron-rich deposits using EDS. Subsequent analysis using focused ion beam cross-sectioning and SEM characterized the iron deposition throughout the 3-D volumes, confirming the presence of iron throughout the deposits, and in two out of four specimens demonstrating colocalization with zinc. Analysis of traditional histology slides showed the analyzed deposits overlapped both with amyloid and tau deposition. Following higher resolution analysis of a single iron deposit using scanning transmission electron microscope (STEM), we demonstrated the potential of monochromated STEM-EELS to discern the relative oxidation state of iron within a deposit. Conclusion: These findings suggest that iron is present in the AD hippocampus and can be visualized and characterized using combined MRI and EM techniques. An altered relative oxidation state may suggest a direct link between iron and oxidative stress in AD. These methods thus could potentially measure an altered relative oxidation state that could suggest a direct link between iron and oxidative stress in AD. Furthermore, we have demonstrated the ability to analyze metal deposition alongside commonly used histological markers of AD pathology, paving the way for future insights into the molecular interactions between Aβ, tau, iron, and other putative metals, such as zinc.


2019 ◽  
Vol 109 ◽  
pp. 107-117 ◽  
Author(s):  
Franciele Martini ◽  
Suzan Gonçalves Rosa ◽  
Isabella Pregardier Klann ◽  
Bruna Cruz Weber Fulco ◽  
Fabiano Barbosa Carvalho ◽  
...  

Oncotarget ◽  
2018 ◽  
Vol 9 (81) ◽  
pp. 35207-35225 ◽  
Author(s):  
Michal Prendecki ◽  
Jolanta Florczak-Wyspianska ◽  
Marta Kowalska ◽  
Jan Ilkowski ◽  
Teresa Grzelak ◽  
...  

2013 ◽  
Vol 10 (2) ◽  
pp. 143-153 ◽  
Author(s):  
Elisa Evangelisti ◽  
Daniel Wright ◽  
Mariagioia Zampagni ◽  
Roberta Cascella ◽  
Claudia Fiorillo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document